forked from MRCIEU/gwas2vcf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgwas.py
executable file
·403 lines (351 loc) · 13.7 KB
/
gwas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import gzip
import logging
import pickle
import re
import tempfile
from heapq import heappush
import uuid
from vgraph import norm
from pvalue_handler import PvalueHandler
valid_nucleotides = {"A", "T", "G", "C"}
class Gwas:
def __init__(
self,
chrom,
pos,
ref,
alt,
b,
se,
nlog_pval,
n,
alt_freq,
dbsnpid,
ncase,
imp_info,
imp_z,
vcf_filter="PASS",
):
self.chrom = chrom
self.pos = pos
self.ref = ref
self.alt = alt
self.b = b
self.se = se
self.nlog_pval = nlog_pval
self.alt_freq = alt_freq
self.n = n
self.dbsnpid = dbsnpid
self.ncase = ncase
self.imp_info = imp_info
self.imp_z = imp_z
self.vcf_filter = vcf_filter
def reverse_sign(self):
ref_old = self.ref
alt_old = self.alt
self.ref = alt_old
self.alt = ref_old
self.b = self.b * -1
if self.imp_z is not None:
self.imp_z = self.imp_z * -1
try:
self.alt_freq = 1 - self.alt_freq
except TypeError:
self.alt_freq = None
def check_reference_allele(self, fasta):
try:
fasta_ref_seq = fasta.fetch(
reference=self.chrom,
start=self.pos - 1,
end=self.pos + len(self.ref) - 1,
).upper()
except:
assert 1 == 2
assert self.ref == fasta_ref_seq
def normalise(self, fasta, padding=100):
# TODO handle padding edge cases
# skip SNVs which do not need trimming
if len(self.ref) < 2 and len(self.alt) < 2:
return
# zero based indexing
pos0 = self.pos - 1
# get reference sequence
seq = fasta.fetch(
reference=self.chrom, start=pos0 - padding, end=pos0 + padding
).upper()
# left-align and trim alleles
start, stop, alleles = norm.normalize_alleles(
seq, padding, padding + len(self.ref), (self.ref, self.alt)
)
# set trimmed alleles and new position
self.ref = alleles[0]
self.alt = alleles[1]
self.pos = (pos0 - padding) + start + 1
# add start base if lost during trimming
if len(self.ref) == 0 or len(self.alt) == 0:
# get distance from old and new positions
dist = (self.pos - 1) - pos0
# extract base from seq
left_nucleotide = seq[(padding + dist) - 1 : (padding + dist)]
# set alleles and pos
self.ref = left_nucleotide + self.ref
self.alt = left_nucleotide + self.alt
self.pos = self.pos - 1
def update_dbsnp(self, dbsnp):
if dbsnp is None:
raise OSError("Could not read dbsnp file")
self.dbsnpid = None
for rec in dbsnp.fetch(contig=self.chrom, start=self.pos - 1, stop=self.pos):
if rec.pos == self.pos:
if self.ref in rec.alleles and self.alt in rec.alleles:
self.dbsnpid = rec.id
break
def check_alleles_are_valid(self):
for nucleotide in self.alt:
assert nucleotide in valid_nucleotides
for nucleotide in self.ref:
assert nucleotide in valid_nucleotides
def __str__(self):
return str(self.__dict__)
""" Function to read in GWAS data from plain text file """
@staticmethod
def read_from_file(
input_file_path,
fast_mode,
fasta,
chrom_col_num,
pos_col_num,
ea_col_num,
nea_col_num,
effect_col_num,
se_col_num,
pval_col_num,
delimiter,
header,
ncase_col_num=None,
rsid_col_num=None,
ea_af_col_num=None,
nea_af_col_num=None,
imp_z_col_num=None,
imp_info_col_num=None,
ncontrol_col_num=None,
alias=None,
dbsnp=None,
):
rsid_pattern = re.compile("^rs[0-9]*$")
logging.info(f"Reading summary stats and mapping to FASTA: {input_file_path}")
logging.debug(f"File path: {input_file_path}")
logging.debug(f"CHR field: {chrom_col_num}")
logging.debug(f"POS field: {pos_col_num}")
logging.debug(f"EA field: {ea_col_num}")
logging.debug(f"NEA field: {nea_col_num}")
logging.debug(f"Effect field: {effect_col_num}")
logging.debug(f"SE field: {se_col_num}")
logging.debug(f"P fields: {pval_col_num}")
logging.debug(f"Delimiter: {delimiter}")
logging.debug(f"Header: {header}")
logging.debug(f"ncase Field: {ncase_col_num}")
logging.debug(f"dbsnp Field: {rsid_col_num}")
logging.debug(f"EA AF Field: {ea_af_col_num}")
logging.debug(f"NEA AF Field: {nea_af_col_num}")
logging.debug(f"IMP Z Score Field: {imp_z_col_num}")
logging.debug(f"IMP INFO Field: {imp_info_col_num}")
logging.debug(f"N Control Field: {ncontrol_col_num}")
# TODO use namedtuple
metadata = {
"TotalVariants": 0,
"VariantsNotRead": 0,
"HarmonisedVariants": 0,
"VariantsNotHarmonised": 0,
"SwitchedAlleles": 0,
"NormalisedVariants": 0,
}
file_idx = {}
try:
f_handle = gzip.open(input_file_path, "rt")
f_handle.read(1)
except gzip.BadGzipFile:
logging.info("Reading plain text file")
f_handle = open(input_file_path)
else:
logging.info("Reading gzip file")
# skip header line (if present)
if header:
logging.info(f"Skipping header: {f_handle.readline().strip()}")
if fast_mode:
results = {}
logging.info("Fast mode enabled, keep everything in RAM")
else:
# store results in a serialised temp file to reduce memory usage
results = tempfile.TemporaryFile()
p_value_handler = PvalueHandler()
for line in f_handle:
metadata["TotalVariants"] += 1
columns = line.strip().split(delimiter)
logging.debug(f"Input row: {columns}")
try:
if alias is not None:
if columns[chrom_col_num] in alias:
chrom = alias[columns[chrom_col_num]]
else:
chrom = columns[chrom_col_num]
else:
chrom = columns[chrom_col_num]
except Exception as exception_name:
logging.debug(f"Skipping {columns}: {exception_name}")
metadata["VariantsNotRead"] += 1
continue
try:
pos = int(float(columns[pos_col_num])) # float is for scientific notation
assert pos > 0
except Exception as exception_name:
logging.debug(f"Skipping {columns}: {exception_name}")
metadata["VariantsNotRead"] += 1
continue
ref = str(columns[nea_col_num]).strip().upper()
alt = str(columns[ea_col_num]).strip().upper()
if ref == alt:
logging.debug(f"Skipping: ref={ref} is the same as alt={alt}")
metadata["VariantsNotRead"] += 1
continue
try:
b = float(columns[effect_col_num])
except Exception as exception_name:
logging.debug(f"Skipping {columns}: {exception_name}")
metadata["VariantsNotRead"] += 1
continue
try:
se = float(columns[se_col_num])
except Exception as exception_name:
logging.debug(f"Skipping {columns}: {exception_name}")
metadata["VariantsNotRead"] += 1
continue
try:
pval = p_value_handler.parse_string(columns[pval_col_num])
nlog_pval = p_value_handler.neg_log_of_decimal(pval)
except Exception as exception_name:
logging.debug(f"Skipping line {columns}, {exception_name}")
metadata["VariantsNotRead"] += 1
continue
try:
if ea_af_col_num is not None:
alt_freq = float(columns[ea_af_col_num])
elif nea_af_col_num is not None:
alt_freq = 1 - float(columns[nea_af_col_num])
else:
alt_freq = None
except (IndexError, TypeError, ValueError) as exception_name:
logging.debug(f"Could not parse allele frequency: {exception_name}")
alt_freq = None
try:
rsid = columns[rsid_col_num]
assert rsid_pattern.match(rsid)
except (IndexError, TypeError, ValueError, AssertionError) as exception_name:
logging.debug(f"Could not parse dbsnp identifier: {exception_name}")
rsid = None
try:
ncase = float(columns[ncase_col_num])
except (IndexError, TypeError, ValueError) as exception_name:
logging.debug(f"Could not parse number of cases: {exception_name}")
ncase = None
try:
ncontrol = float(columns[ncontrol_col_num])
except (IndexError, TypeError, ValueError) as exception_name:
logging.debug(f"Could not parse number of controls: {exception_name}")
ncontrol = None
try:
n = ncase + ncontrol
except (IndexError, TypeError, ValueError) as exception_name:
logging.debug(f"Could not sum cases and controls: {exception_name}")
n = ncontrol
try:
imp_info = float(columns[imp_info_col_num])
except (IndexError, TypeError, ValueError) as exception_name:
logging.debug(f"Could not parse imputation INFO: {exception_name}")
imp_info = None
try:
imp_z = float(columns[imp_z_col_num])
except (IndexError, TypeError, ValueError) as exception_name:
logging.debug(f"Could not parse imputation Z score: {exception_name}")
imp_z = None
result = Gwas(
chrom,
pos,
ref,
alt,
b,
se,
nlog_pval,
n,
alt_freq,
rsid,
ncase,
imp_info,
imp_z,
)
logging.debug(f"Extracted row: {result}")
# check alleles
try:
result.check_alleles_are_valid()
except AssertionError as exception_name:
logging.debug(f"Skipping {columns}: {exception_name}")
metadata["VariantsNotRead"] += 1
continue
# harmonise alleles
try:
result.check_reference_allele(fasta)
except AssertionError:
try:
result.reverse_sign()
result.check_reference_allele(fasta)
metadata["SwitchedAlleles"] += 1
except AssertionError as exception_name:
logging.debug(f"Could not harmonise {columns}: {exception_name}")
metadata["VariantsNotHarmonised"] += 1
continue
metadata["HarmonisedVariants"] += 1
# left align and trim variants
if len(ref) > 1 and len(alt) > 1:
try:
result.normalise(fasta)
except Exception as exception_name:
logging.debug(f"Could not normalise {columns}: {exception_name}")
metadata["VariantsNotHarmonised"] += 1
continue
metadata["NormalisedVariants"] += 1
# add or update dbSNP identifier
if dbsnp is not None:
result.update_dbsnp(dbsnp)
# keep file position sorted by chromosome position for recall later
if result.chrom not in file_idx:
file_idx[result.chrom] = []
if fast_mode:
uid = uuid.uuid4()
heappush(file_idx[result.chrom], (result.pos, uid))
results[f"{result.chrom}_{result.pos}_{uid}"] = result
else:
heappush(file_idx[result.chrom], (result.pos, results.tell()))
try:
pickle.dump(result, results)
except Exception as exception_name:
logging.error(f"Could not write to {tempfile.gettempdir()}:", exception_name)
raise exception_name
f_handle.close()
logging.info(f'Total variants: {metadata["TotalVariants"]}')
logging.info(f'Variants could not be read: {metadata["VariantsNotRead"]}')
logging.info(f'Variants harmonised: {metadata["HarmonisedVariants"]}')
logging.info(
f'Variants discarded during harmonisation: {metadata["VariantsNotHarmonised"]}'
)
logging.info(f'Alleles switched: {metadata["SwitchedAlleles"]}')
logging.info(f'Normalised variants: {metadata["NormalisedVariants"]}')
logging.info(
f'Skipped {metadata["VariantsNotRead"] + metadata["VariantsNotHarmonised"]} of {metadata["TotalVariants"]}'
)
if (metadata["VariantsNotRead"] + metadata["VariantsNotHarmonised"]) / metadata[
"TotalVariants"
] > 0.2:
logging.warning(
"More than 20% of variants not read or harmonised. Check your input"
)
return results, file_idx, metadata