-
Notifications
You must be signed in to change notification settings - Fork 428
/
Copy pathrun_dpo.py
261 lines (230 loc) · 9.28 KB
/
run_dpo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import random
import sys
import torch
import transformers
from transformers import AutoModelForCausalLM, set_seed
from alignment import (
DataArguments,
DPOConfig,
H4ArgumentParser,
ModelArguments,
apply_chat_template,
decontaminate_humaneval,
get_checkpoint,
get_datasets,
get_kbit_device_map,
get_peft_config,
get_quantization_config,
get_tokenizer,
is_adapter_model,
)
from peft import PeftConfig, PeftModel
from trl import DPOTrainer
logger = logging.getLogger(__name__)
def main():
parser = H4ArgumentParser((ModelArguments, DataArguments, DPOConfig))
model_args, data_args, training_args = parser.parse()
#######
# Setup
#######
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.info(f"Model parameters {model_args}")
logger.info(f"Data parameters {data_args}")
logger.info(f"Training/evaluation parameters {training_args}")
# Check for last checkpoint
last_checkpoint = get_checkpoint(training_args)
if last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(f"Checkpoint detected, resuming training at {last_checkpoint=}.")
# Set seed for reproducibility
set_seed(training_args.seed)
###############
# Load datasets
###############
raw_datasets = get_datasets(
data_args,
splits=data_args.dataset_splits,
configs=data_args.dataset_configs,
columns_to_keep=["messages", "chosen", "rejected", "prompt", "completion", "label"],
)
logger.info(
f"Training on the following splits: {[split + ' : ' + str(dset.num_rows) for split, dset in raw_datasets.items()]}"
)
column_names = list(raw_datasets["train"].features)
#####################################
# Load tokenizer and process datasets
#####################################
data_args.truncation_side = "left" # Truncate from left to ensure we don't lose labels in final turn
tokenizer = get_tokenizer(model_args, data_args)
#####################
# Apply chat template
#####################
raw_datasets = raw_datasets.map(
apply_chat_template,
fn_kwargs={
"tokenizer": tokenizer,
"task": "dpo",
"auto_insert_empty_system_msg": data_args.auto_insert_empty_system_msg,
},
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
desc="Formatting comparisons with prompt template",
)
##########################
# Decontaminate benchmarks
##########################
num_raw_train_samples = len(raw_datasets["train"])
raw_datasets = raw_datasets.filter(
decontaminate_humaneval,
fn_kwargs={"text_column": "text_chosen"},
batched=True,
batch_size=10_000,
num_proc=1,
desc="Decontaminating HumanEval samples",
)
num_filtered_train_samples = num_raw_train_samples - len(raw_datasets["train"])
logger.info(
f"Decontaminated {num_filtered_train_samples} ({num_filtered_train_samples/num_raw_train_samples * 100:.2f}%) samples from the training set."
)
# Replace column names with what TRL needs, text_chosen -> chosen and text_rejected -> rejected
for split in ["train", "test"]:
raw_datasets[split] = raw_datasets[split].rename_columns(
{"text_prompt": "prompt", "text_chosen": "chosen", "text_rejected": "rejected"}
)
# Log a few random samples from the training set:
for index in random.sample(range(len(raw_datasets["train"])), 3):
logger.info(f"Prompt sample {index} of the raw training set:\n\n{raw_datasets['train'][index]['prompt']}")
logger.info(f"Chosen sample {index} of the raw training set:\n\n{raw_datasets['train'][index]['chosen']}")
logger.info(f"Rejected sample {index} of the raw training set:\n\n{raw_datasets['train'][index]['rejected']}")
torch_dtype = (
model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
)
quantization_config = get_quantization_config(model_args)
model_kwargs = dict(
revision=model_args.model_revision,
trust_remote_code=model_args.trust_remote_code,
attn_implementation=model_args.attn_implementation,
torch_dtype=torch_dtype,
use_cache=False if training_args.gradient_checkpointing else True,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
model = model_args.model_name_or_path
if is_adapter_model(model, model_args.model_revision) is True:
logger.info(f"Loading SFT adapter for {model_args.model_name_or_path=}")
peft_config = PeftConfig.from_pretrained(model_args.model_name_or_path, revision=model_args.model_revision)
model_kwargs = dict(
revision=model_args.base_model_revision,
trust_remote_code=model_args.trust_remote_code,
attn_implementation=model_args.attn_implementation,
torch_dtype=torch_dtype,
use_cache=False if training_args.gradient_checkpointing else True,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
base_model = AutoModelForCausalLM.from_pretrained(
peft_config.base_model_name_or_path,
**model_kwargs,
)
model = PeftModel.from_pretrained(
base_model,
model_args.model_name_or_path,
revision=model_args.model_revision,
)
model_kwargs = None
ref_model = model
ref_model_kwargs = model_kwargs
if model_args.use_peft is True:
ref_model = None
ref_model_kwargs = None
#########################
# Instantiate DPO trainer
#########################
trainer = DPOTrainer(
model,
ref_model,
model_init_kwargs=model_kwargs,
ref_model_init_kwargs=ref_model_kwargs,
args=training_args,
beta=training_args.beta,
train_dataset=raw_datasets["train"],
eval_dataset=raw_datasets["test"],
tokenizer=tokenizer,
max_length=training_args.max_length,
max_prompt_length=training_args.max_prompt_length,
peft_config=get_peft_config(model_args),
loss_type=training_args.loss_type,
)
###############
# Training loop
###############
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
metrics = train_result.metrics
metrics["train_samples"] = len(raw_datasets["train"])
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
logger.info("*** Training complete ***")
##################################
# Save model and create model card
##################################
logger.info("*** Save model ***")
trainer.save_model(training_args.output_dir)
logger.info(f"Model saved to {training_args.output_dir}")
# Save everything else on main process
kwargs = {
"finetuned_from": model_args.model_name_or_path,
"dataset": list(data_args.dataset_mixer.keys()),
"dataset_tags": list(data_args.dataset_mixer.keys()),
"tags": ["alignment-handbook"],
}
if trainer.accelerator.is_main_process:
trainer.create_model_card(**kwargs)
# Restore k,v cache for fast inference
trainer.model.config.use_cache = True
trainer.model.config.save_pretrained(training_args.output_dir)
##########
# Evaluate
##########
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
metrics["eval_samples"] = len(raw_datasets["test"])
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
if training_args.push_to_hub is True:
logger.info("Pushing to hub...")
trainer.push_to_hub(**kwargs)
logger.info("*** Training complete! ***")
if __name__ == "__main__":
main()