forked from thangbui/geepee
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTODO.txt
95 lines (83 loc) · 4.17 KB
/
TODO.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
## daily todos
- [X] merge GPSSMs with Linear emission and GP emission
- [X] cleaned up GPSSM examples
- [X] stochastic optimisation for GPSSMs and GPLVMs
- [ ] figure out why the gradients of eta2 is twice what should be on the kink task
- [ ] simple Monte Carlo for EP modules
- [ ] merge JMLR code (PEP for GPR/C) into this package
- [ ] linearisation
- [ ] GPSSM experiments
- [ ] re-run deep GPR experiments
- [ ] GPSSM - VFE
- [ ] make sure that GPSSMs init and learning is robust on many simple 1-D problems
## GOALS
GP regression/classification
+----------+-------+------+----------+
| Method | Batch | Stoc | Examples |
+----------+-------+------+----------+
| BB-alpha | | | |
+----------+-------+------+----------+
| PEP | | | |
+----------+-------+------+----------+
| VFE | | | |
+----------+-------+------+----------+
GP LVM
+----------+-------+------+-----------------+-----------+---------------+----------+
| Method | Batch | Stoc | Moment-matching | Simple MC | Linearisation | Examples |
+----------+-------+------+-----------------+-----------+---------------+----------+
| BB-alpha | | | | | | |
+----------+-------+------+-----------------+-----------+---------------+----------+
| PEP | | | | | | |
+----------+-------+------+-----------------+-----------+---------------+----------+
| VFE | | | | | | |
+----------+-------+------+-----------------+-----------+---------------+----------+
GP SSM
+----------+-------+------+----+-----------+-----+---------+--------+---------------+----------+
| Method | Batch | Stoc | MM | Simple MC | Lin | Lin emi | GP emi | Non-Gauss emi | Examples |
+----------+-------+------+----+-----------+-----+---------+--------+---------------+----------+
| BB-alpha | | | | | | | | | |
+----------+-------+------+----+-----------+-----+---------+--------+---------------+----------+
| PEP | | | | | | | | | |
+----------+-------+------+----+-----------+-----+---------+--------+---------------+----------+
| VFE | | | | | | | | | |
+----------+-------+------+----+-----------+-----+---------+--------+---------------+----------+
Deep GPs should handle everything above
## General
- [x] save/load models: is saving parameters enough?
- [x] remove for loops in aep_models update_posterior, compute_cavity
- [ ] separate parameters for different output dimensions
- [ ] stochastic optimisations for all models,
check that gradients are correct and bias is small
- [ ] linearisation
- [ ] quadrature/MC
- [ ] a comparison of LIN vs MM vs MC
## AEP (BB-alpha) modules
- [x] sparse GPLVM
- [x] sparse GP regression and classification: make sure that the gradients of logZ
are the same with sparse GPLVM when variance = 0
- [x] sparse Deep GP regression and classification
- [ ] sparse Deep GP latent variable models
- [ ] sparse Deep GP with hidden variables
- [x] sparse GP state space models
- [ ] for sparse Deep GP with no hidden variables: alpha = 1.0 do moment matching,
for other alphas, what do we do?
## EP modules
- [ ] numerical instability/invalid updates
- [x] sparse GPR/C inference
- [ ] sparse GPR/C learning
- [x] GPLVM inference
- [ ] GPLVM learning, half-ticked, could use AEP learning insteard
- [ ] Deep-GP inference
- [ ] Deep-GP learning
- [x] GP SSM inference
- [ ] GP SSM learning, half-ticked, could use AEP learning instead
- [ ] GP SSM inference and learning with control signal
- [ ] should work with all alphas
## VI modules
- [x] Titsias's VI for GPR/C (collapsed)
- [ ] Titsias's VI for GPR/C (uncollapsed)
- [ ] Titsias's VI for GPLVM (collapsed bound)
- [ ] Titsias's VI for GPLVM (uncollapsed bound)
- [ ] Frigola's VI for GPSSM (mean field and tridiagonal precision (Markov))
- [ ] Hensman's VI compression for Deep GPR/C, LVM
- [ ] make sure that these converge to AEP/EP modules when alpha -> 0