-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path2D_gaussian_demo.py
125 lines (93 loc) · 3.03 KB
/
2D_gaussian_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# -*- coding: utf-8 -*-
"""
Created on Tue Feb 23 13:26:19 2016
@author: hughsalimbeni
"""
import numpy as np
from utils import generate_parameters
from plotting import single_panel_demo
from matplotlib import animation
plt = single_panel_demo(3)
def anim(i):
print i
plt.cla()
pis, mus, Sigmas = generate_parameters(2)
mu = mus[0, :]
Sigma = Sigmas[0, :, :]
Lambda = np.linalg.inv(Sigma)
plt.plot_ellipse(mu, Sigma, 0.7, plt.colours[:, 1])
var_Sigma = np.reshape(np.array((Lambda[0, 0]**(-1.), 0., 0., Lambda[1, 1]**(-1.))), (2, 2))
plt.plot_ellipse(mu, var_Sigma, 0.5, plt.colours[:, 0])
plt.draw()
FFMpegWriter = animation.writers['ffmpeg']
frames = 50
fps = 1
writer = FFMpegWriter(fps=fps, bitrate=100*fps)
anim = animation.FuncAnimation(plt.fig, anim, frames=frames)
anim.save("2d_gaussian.mp4", writer=writer)
#
#def make_demo(num_samples):
# K = 1
# Sigmas = np.empty((num_samples, K, 2, 2))
# mus = np.empty((num_samples, K, 2))
# pis = np.empty((num_samples, K))
# out = None
#
# a_k = 10.*np.ones(K)
# b_k = 1.*np.ones(K)
# v_k = 2.5*np.ones(K)
# m_k = np.empty((K, 2))
# W_k = np.empty((K, 2, 2))
# for k in range(K):
# m_k[k, :] = np.zeros(2)
# W_k[k, :, :] = np.eye(2)
#
# pis, mus, Sigmas, out = generate_samples_correlated_new(num_samples,
# a_k, b_k, m_k, W_k, v_k, out)
#
## def animate(n):
# for i in range(5):
# n = np.random.random_integers(0, num_samples, 1)
# plt.cla()
# mu = mus[n, 0, :]
# Sigma = Sigmas[n, 0, :, :]
# Lambda = np.linalg.inv(Sigma)
# plt.plot_ellipse(mu, Sigma, 0.7, plt.colours[:, 1])
# var_Sigma = np.reshape(np.array((Lambda[0, 0]**(-1.), 0., 0., Lambda[1, 1]**(-1.))), (2, 2))
# plt.plot_ellipse(mu, var_Sigma, 0.5, plt.colours[:, 0])
# plt.fig.plt.fig.savefig('2D_gaussian'+ str(i)+'.png', format='png')
# plt.draw()
# return animate
#FFMpegWriter = animation.writers['ffmpeg']
#
#frames = 500
#fps=15
#
#writer = FFMpegWriter(fps=fps, bitrate=100*fps)
#animate = make_demo(frames)
#anim = animation.FuncAnimation(plt.fig, animate, frames=frames)
#anim.save("2d_gaussian.mp4", writer=writer)
#a_k = 10.*np.ones(K)
#b_k = 1.*np.ones(K)
#v_k = 2.5*np.ones(K)
#m_k = np.empty((K, 2))
#W_k = np.empty((K, 2, 2))
#for k in range(K):
# m_k[k, :] = np.zeros(2)
# W_k[k, :, :] = np.eye(2)
#
#pis, mus, Sigmas, out = generate_samples_correlated_new(num_samples,
# a_k, b_k, m_k, W_k, v_k, out)
#
#
#
#n = np.random.random_integers(0, 499, 1)[0]
#plt.cla()
#mu = mus[n, 0, :]
#Sigma = Sigmas[n, 0, :, :]
#Lambda = np.linalg.inv(Sigma)
#plt.plot_ellipse(mu, Sigma, 0.7, plt.colours[:, 1])
#var_Sigma = np.reshape(np.array((Lambda[0, 0]**(-1.), 0., 0., Lambda[1, 1]**(-1.))), (2, 2))
#plt.plot_ellipse(mu, var_Sigma, 0.5, plt.colours[:, 0])
#plt.fig.savefig('2D_gaussian'+ str(i)+'.png', format='png')
#