-
Notifications
You must be signed in to change notification settings - Fork 381
/
Copy pathlosses.py
66 lines (57 loc) · 2.7 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import tensorflow as tf
import cfg
def quad_loss(y_true, y_pred):
# loss for inside_score
logits = y_pred[:, :, :, :1]
labels = y_true[:, :, :, :1]
# balance positive and negative samples in an image
beta = 1 - tf.reduce_mean(labels)
# first apply sigmoid activation
predicts = tf.nn.sigmoid(logits)
# log +epsilon for stable cal
inside_score_loss = tf.reduce_mean(
-1 * (beta * labels * tf.log(predicts + cfg.epsilon) +
(1 - beta) * (1 - labels) * tf.log(1 - predicts + cfg.epsilon)))
inside_score_loss *= cfg.lambda_inside_score_loss
# loss for side_vertex_code
vertex_logits = y_pred[:, :, :, 1:3]
vertex_labels = y_true[:, :, :, 1:3]
vertex_beta = 1 - (tf.reduce_mean(y_true[:, :, :, 1:2])
/ (tf.reduce_mean(labels) + cfg.epsilon))
vertex_predicts = tf.nn.sigmoid(vertex_logits)
pos = -1 * vertex_beta * vertex_labels * tf.log(vertex_predicts +
cfg.epsilon)
neg = -1 * (1 - vertex_beta) * (1 - vertex_labels) * tf.log(
1 - vertex_predicts + cfg.epsilon)
positive_weights = tf.cast(tf.equal(y_true[:, :, :, 0], 1), tf.float32)
side_vertex_code_loss = \
tf.reduce_sum(tf.reduce_sum(pos + neg, axis=-1) * positive_weights) / (
tf.reduce_sum(positive_weights) + cfg.epsilon)
side_vertex_code_loss *= cfg.lambda_side_vertex_code_loss
# loss for side_vertex_coord delta
g_hat = y_pred[:, :, :, 3:]
g_true = y_true[:, :, :, 3:]
vertex_weights = tf.cast(tf.equal(y_true[:, :, :, 1], 1), tf.float32)
pixel_wise_smooth_l1norm = smooth_l1_loss(g_hat, g_true, vertex_weights)
side_vertex_coord_loss = tf.reduce_sum(pixel_wise_smooth_l1norm) / (
tf.reduce_sum(vertex_weights) + cfg.epsilon)
side_vertex_coord_loss *= cfg.lambda_side_vertex_coord_loss
return inside_score_loss + side_vertex_code_loss + side_vertex_coord_loss
def smooth_l1_loss(prediction_tensor, target_tensor, weights):
n_q = tf.reshape(quad_norm(target_tensor), tf.shape(weights))
diff = prediction_tensor - target_tensor
abs_diff = tf.abs(diff)
abs_diff_lt_1 = tf.less(abs_diff, 1)
pixel_wise_smooth_l1norm = (tf.reduce_sum(
tf.where(abs_diff_lt_1, 0.5 * tf.square(abs_diff), abs_diff - 0.5),
axis=-1) / n_q) * weights
return pixel_wise_smooth_l1norm
def quad_norm(g_true):
shape = tf.shape(g_true)
delta_xy_matrix = tf.reshape(g_true, [-1, 2, 2])
diff = delta_xy_matrix[:, 0:1, :] - delta_xy_matrix[:, 1:2, :]
square = tf.square(diff)
distance = tf.sqrt(tf.reduce_sum(square, axis=-1))
distance *= 4.0
distance += cfg.epsilon
return tf.reshape(distance, shape[:-1])