-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathqg_pipeline.py
452 lines (384 loc) · 17 KB
/
qg_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
# adapted from https://github.com/patil-suraj/question_generation which is under the MIT License
import itertools
import logging
from typing import Optional, Dict, Union
import os
from nltk import sent_tokenize
import torch
from transformers import(
AutoModelForSeq2SeqLM,
AutoTokenizer,
PreTrainedModel,
PreTrainedTokenizer,
)
logger = logging.getLogger(__name__)
class QGPipeline:
"""Poor man's QG pipeline"""
def __init__(
self,
model: PreTrainedModel,
tokenizer: PreTrainedTokenizer,
ans_model: PreTrainedModel,
ans_tokenizer: PreTrainedTokenizer,
qg_format: str,
device: str,
default_answers = None,
):
self.model = model
self.tokenizer = tokenizer
self.ans_model = ans_model
self.ans_tokenizer = ans_tokenizer
self.qg_format = qg_format
self.default_answers = default_answers
self.device = device
if self.model.device != self.device:
self.model.to(self.device).eval()
if device == "cpu":
self.model = torch.quantization.quantize_dynamic(self.model.float(), {torch.nn.Linear}, dtype=torch.qint8)
else:
self.model = self.model.half().to(device)
if self.ans_model is not self.model:
if self.ans_model.device != self.device:
self.ans_model.to(self.device).eval()
if device == "cpu":
self.ans_model = torch.quantization.quantize_dynamic(self.ans_model.float(), {torch.nn.Linear}, dtype=torch.qint8)
else:
self.ans_model = self.ans_model.half().to(device)
assert self.model.__class__.__name__ in ["T5ForConditionalGeneration", "BartForConditionalGeneration"]
if "T5ForConditionalGeneration" in self.model.__class__.__name__:
self.model_type = "t5"
else:
self.model_type = "bart"
def __call__(self, inputs: str, **generate_kwargs):
self.model.eval()
self.ans_model.eval()
ret = []
with torch.no_grad():
if type(inputs) is str:
inputs = [inputs]
default_answers=[]
if 'default_answers' in generate_kwargs:
default_answers = generate_kwargs['default_answers']
if default_answers and type(default_answers[0]) is str:
default_answers = [default_answers] * len(inputs)
if len(default_answers) < len(inputs):
default_answers.extend([[]]*(len(inputs)-len(default_answers)))
#TODO - we could do in batches that is approximately N words to maximize GPU usage
for input, default_answer in zip(inputs, default_answers):
qg_examples = []
input = " ".join(input.split())
sents, answers = self._extract_answers(input)
if self.default_answers:
answers.append(self.default_answers)
if default_answer:
answers.append(default_answer)
flat_answers = list(itertools.chain(*answers))
if len(flat_answers) == 0:
ret.append([])
continue
answers = [flat_answers]*len(sents) # multi-way q/a
if self.qg_format == "prepend":
qg_examples.extend(self._prepare_inputs_for_qg_from_answers_prepend(inputs, answers))
else:
qg_examples.extend(self._prepare_inputs_for_qg_from_answers_hl(sents, answers))
if qg_examples:
qg_inputs = [example['source_text'] for example in qg_examples]
questions = self._generate_questions(qg_inputs)
output = list(set([(example['answer'], que) for example, que in zip(qg_examples, questions)]))
ret.append([{'answer': answer, 'question': que} for answer, que in output])
else:
ret.append([])
return ret
def _generate_questions(self, inputs):
inputs = self._tokenize(inputs, padding=True, truncation=True)
outs = self.model.generate(
input_ids=inputs['input_ids'].to(self.device),
attention_mask=inputs['attention_mask'].to(self.device),
max_length=32,
num_beams=4,
)
questions = [self.tokenizer.decode(ids, skip_special_tokens=True) for ids in outs]
return questions
def _extract_answers(self, context):
sents, inputs = self._prepare_inputs_for_ans_extraction(context)
inputs = self._tokenize(inputs, padding=True, truncation=True)
self.ans_model.eval()
with torch.no_grad():
outs = self.ans_model.generate(
input_ids=inputs['input_ids'].to(self.device),
attention_mask=inputs['attention_mask'].to(self.device),
max_length=32,
)
dec = [self.ans_tokenizer.decode(ids, skip_special_tokens=False) for ids in outs]
answers = [item.replace("<pad>","").replace(" ", " ").strip().split('<sep>') for item in dec]
answers = [i[:-1] for i in answers if i !=[]]
return sents, answers
def _tokenize(self,
inputs,
padding=True,
truncation=True,
add_special_tokens=True,
max_length=512
):
inputs = self.tokenizer.batch_encode_plus(
inputs,
max_length=max_length,
add_special_tokens=add_special_tokens,
truncation=truncation,
padding="max_length" if padding else False,
pad_to_max_length=padding,
return_tensors="pt"
)
return inputs
def _prepare_inputs_for_ans_extraction(self, text):
sents = sent_tokenize(text)
inputs = []
for i in range(len(sents)):
source_text = "extract answers:"
for j, sent in enumerate(sents):
if i == j:
sent = "<hl> %s <hl>" % sent
source_text = "%s %s" % (source_text, sent)
source_text = source_text.strip()
if self.model_type == "t5":
source_text = source_text + " </s>"
inputs.append(source_text)
return sents, inputs
def _prepare_inputs_for_qg_from_answers_hl(self, sents, answers):
inputs = []
for i, answer in enumerate(answers):
if len(answer) == 0: continue
for answer_text in answer:
sent = sents[i]
sents_copy = sents[:]
answer_text = answer_text.strip()
if answer_text.lower() not in sent.lower(): continue
ans_start_idx = sent.lower().index(answer_text.lower())
sent = f"{sent[:ans_start_idx]} <hl> {answer_text} <hl> {sent[ans_start_idx + len(answer_text): ]}"
sents_copy[i] = sent
source_text = " ".join(sents_copy)
source_text = f"generate question: {source_text}"
if self.model_type == "t5":
source_text = source_text + " </s>"
inputs.append({"answer": answer_text, "source_text": source_text})
return inputs
def _prepare_inputs_for_qg_from_answers_prepend(self, context, answers):
flat_answers = list(itertools.chain(*answers))
examples = []
for answer in flat_answers:
source_text = f"answer: {answer} context: {context}"
if self.model_type == "t5":
source_text = source_text + " </s>"
examples.append({"answer": answer, "source_text": source_text})
return examples
class MultiTaskQAQGPipeline(QGPipeline):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def __call__(self, inputs: Union[Dict, str], **generate_kwargs):
if type(inputs) in (list, str):
# do qg
return super().__call__(inputs, **generate_kwargs)
else:
# do qa
return self._extract_answer(inputs["question"], inputs["context"], **generate_kwargs)
def _prepare_inputs_for_qa(self, question, context):
source_text = f"question: {question} context: {context}"
if self.model_type == "t5":
source_text = source_text + " </s>"
return source_text
def _extract_answer(self, question, context):
source_text = self._prepare_inputs_for_qa(question, context)
inputs = self._tokenize([source_text], padding=False)
outs = self.model.generate(
input_ids=inputs['input_ids'].to(self.device),
attention_mask=inputs['attention_mask'].to(self.device),
max_length=16,
)
answer = self.tokenizer.decode(outs[0], skip_special_tokens=True)
return answer
class E2EQGPipeline:
def __init__(
self,
model: PreTrainedModel,
tokenizer: PreTrainedTokenizer,
device: str,
) :
self.model = model
self.tokenizer = tokenizer
self.device = device
self.model.to(self.device)
assert self.model.__class__.__name__ in ["T5ForConditionalGeneration", "BartForConditionalGeneration"]
if "T5ForConditionalGeneration" in self.model.__class__.__name__:
self.model_type = "t5"
else:
self.model_type = "bart"
self.default_generate_kwargs = {
"max_length": 256,
"num_beams": 4,
"length_penalty": 1.5,
"no_repeat_ngram_size": 3,
"early_stopping": True,
}
def __call__(self, context: str, **generate_kwargs):
inputs = self._prepare_inputs_for_e2e_qg(context)
# TODO: when overrding default_generate_kwargs all other arguments need to be passsed
# find a better way to do this
if not generate_kwargs:
generate_kwargs = self.default_generate_kwargs
input_length = inputs["input_ids"].shape[-1]
# max_length = generate_kwargs.get("max_length", 256)
# if input_length < max_length:
# logger.warning(
# "Your max_length is set to {}, but you input_length is only {}. You might consider decreasing max_length manually, e.g. summarizer('...', max_length=50)".format(
# max_length, input_length
# )
# )
outs = self.model.generate(
input_ids=inputs['input_ids'].to(self.device),
attention_mask=inputs['attention_mask'].to(self.device),
**generate_kwargs
)
prediction = self.tokenizer.decode(outs[0], skip_special_tokens=True)
questions = prediction.split("<sep>")
questions = [question.strip() for question in questions[:-1]]
return questions
def _prepare_inputs_for_e2e_qg(self, context):
source_text = f"generate questions: {context}"
if self.model_type == "t5":
source_text = source_text + " </s>"
inputs = self._tokenize([source_text], padding=False)
return inputs
def _tokenize(
self,
inputs,
padding=True,
truncation=True,
add_special_tokens=True,
max_length=512
):
inputs = self.tokenizer.batch_encode_plus(
inputs,
max_length=max_length,
add_special_tokens=add_special_tokens,
truncation=truncation,
padding="max_length" if padding else False,
pad_to_max_length=padding,
return_tensors="pt"
)
return inputs
SUPPORTED_TASKS = {
"question-generation": {
"impl": QGPipeline,
"default": {
"model": "valhalla/t5-small-qg-hl" if 'PII' not in os.getcwd() else os.path.join(os.getcwd(),'../t5-small-qa-qg-hl/'),
"ans_model": "valhalla/t5-small-qa-qg-hl" if 'PII' not in os.getcwd() else os.path.join(os.getcwd(),'../t5-small-qa-qg-hl/'),
}
},
"multitask-qa-qg": {
"impl": MultiTaskQAQGPipeline,
"default": {
"model": "valhalla/t5-small-qa-qg-hl" if 'PII' not in os.getcwd() else os.path.join(os.getcwd(),'../t5-small-qa-qg-hl/'),
}
},
"e2e-qg": {
"impl": E2EQGPipeline,
"default": {
"model": "valhalla/t5-small-e2e-qg" if 'PII' not in os.getcwd() else os.path.join(os.getcwd(),'../t5-small-e2e-qg/'),
}
}
}
def pipeline(
task: str,
model: Optional = None,
tokenizer: Optional[Union[str, PreTrainedTokenizer]] = None,
qg_format: Optional[str] = "highlight",
ans_model: Optional = None,
ans_tokenizer: Optional[Union[str, PreTrainedTokenizer]] = None,
device: str = "cpu",
**kwargs,
):
# Retrieve the task
if task not in SUPPORTED_TASKS:
raise KeyError("Unknown task {}, available tasks are {}".format(task, list(SUPPORTED_TASKS.keys())))
targeted_task = SUPPORTED_TASKS[task]
task_class = targeted_task["impl"]
models_same=False
# Use default model/config/tokenizer for the task if no model is provided
if model is None:
model = targeted_task["default"]["model"]
if ans_model is None:
ans_model = targeted_task["default"].get("ans_model", None)
if isinstance(model, str) and isinstance(ans_model, str) and model == ans_model:
models_same = True
# Try to infer tokenizer from model or config name (if provided as str)
if tokenizer is None:
if isinstance(model, str):
tokenizer = model
else:
# Impossible to guest what is the right tokenizer here
raise Exception(
"Impossible to guess which tokenizer to use. "
"Please provided a PretrainedTokenizer class or a path/identifier to a pretrained tokenizer."
)
# Instantiate tokenizer if needed
if isinstance(tokenizer, (str, tuple)):
if isinstance(tokenizer, tuple):
# For tuple we have (tokenizer name, {kwargs})
tokenizer = AutoTokenizer.from_pretrained(tokenizer[0], **tokenizer[1])
else:
#print(tokenizer)
tokenizer = AutoTokenizer.from_pretrained(tokenizer)
# Instantiate model if needed
if isinstance(model, str):
model = AutoModelForSeq2SeqLM.from_pretrained(model).eval()
if device == "cpu":
model = torch.quantization.quantize_dynamic(model, {torch.nn.Linear}, dtype=torch.qint8)
else:
model = model.half().to(device)
if task == "question-generation":
if ans_model is None:
# load default ans model
ans_model = targeted_task["default"]["ans_model"]
ans_tokenizer = AutoTokenizer.from_pretrained(ans_model)
if models_same:
ans_model = model
else:
ans_model = AutoModelForSeq2SeqLM.from_pretrained(ans_model).eval()
if device == "cpu":
ans_model = torch.quantization.quantize_dynamic(ans_model, {torch.nn.Linear}, dtype=torch.qint8)
else:
ans_model = ans_model.half().to(device)
else:
# Try to infer tokenizer from model or config name (if provided as str)
if models_same:
ans_tokenizer = tokenizer
elif ans_tokenizer is None:
if isinstance(ans_model, str):
ans_tokenizer = ans_model
else:
# Impossible to guest what is the right tokenizer here
raise Exception(
"Impossible to guess which tokenizer to use. "
"Please provided a PretrainedTokenizer class or a path/identifier to a pretrained tokenizer."
)
# Instantiate tokenizer if needed
if isinstance(ans_tokenizer, (str, tuple)):
if isinstance(ans_tokenizer, tuple):
# For tuple we have (tokenizer name, {kwargs})
ans_tokenizer = AutoTokenizer.from_pretrained(ans_tokenizer[0], **ans_tokenizer[1])
else:
ans_tokenizer = AutoTokenizer.from_pretrained(ans_tokenizer)
if models_same:
ans_model = model
elif isinstance(ans_model, str):
ans_model = AutoModelForSeq2SeqLM.from_pretrained(ans_model).eval()
if device == "cpu":
ans_model = torch.quantization.quantize_dynamic(ans_model, {torch.nn.Linear}, dtype=torch.qint8)
else:
ans_model = ans_model.half().to(device)
if task == "e2e-qg":
return task_class(model=model, tokenizer=tokenizer, device=device)
elif task == "question-generation":
return task_class(model=model, tokenizer=tokenizer, ans_model=ans_model, ans_tokenizer=ans_tokenizer, qg_format=qg_format, device=device)
else:
return task_class(model=model, tokenizer=tokenizer, ans_model=model, ans_tokenizer=tokenizer, qg_format=qg_format, device=device)