-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcommon.py
444 lines (338 loc) · 12.8 KB
/
common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
import re
import numpy as np
import sys
import os
def Det(v1, v2, v3):
det = v1[0] * v2[1] * v3[2] + \
v2[0] * v3[1] * v1[2] + \
v3[0] * v1[1] * v2[2] - \
v3[0] * v2[1] * v1[2] - \
v2[0] * v1[1] * v3[2] - \
v1[0] * v3[1] * v2[2]
return det
def triangleIntersect(start, direction, ta, tb, tc):
EPS = 0.000001
e1 = np.reshape(ta, 3) - np.reshape(tb, 3)
e2 = np.reshape(ta, 3) - np.reshape(tc, 3)
s = np.reshape(ta,3) - np.reshape(start,3)
det = Det(direction, e1, e2)
t = Det(s, e1, e2) / det
be = Det(direction, s, e2) / det
ga = Det(direction, e1, s) / det
if (t > EPS and be >=0 and ga >= 0 and be + ga <= 1):
return True
return False
def isoNormalMat(targetVec):
targetZ = normalize(targetVec).reshape(-1)
candY = (0,1,0)
if targetZ.dot(candY) > 0.99:
candY = (1,0,0)
targetX = normalize(np.cross(candY, targetZ)).reshape(-1)
targetY = np.cross(targetZ, targetX)
mat = np.row_stack([targetX, targetY, targetZ])
return mat
def VecToEnvDir(vecs):
targetMat = np.row_stack([[1, 0, 0], [0, 0, -1], [0, 1, 0]])
rads = VecToSph(targetMat.dot(np.reshape(vecs,(-1,3)).T).T)
phis = rads[:,0]
phis[phis<np.pi/2.0] += np.pi*2.0
us = (phis - np.pi/2.0) / (np.pi*2.0)
vs = (rads[:,1]) / np.pi
return np.column_stack([us,vs])
def createMaskedSG(color=(1.0,1.0,1.0), mu = 1.0, axis = (0,0,1), maskAxis = (0,0,1), maskDeg = 180, res = (512, 256)):
initShape = res
uvMap = np.ones((initShape[1], initShape[0], 2))
# the environment maps faces have fixed orientations regarding the scene:
# env up, scene up; env mid right, scene right; env center, scene forward
# the order the directions appear on the pixel should match the target relighting axes.
# original phi theta: theta :0~pi pi:1.5pi ~ -0.5pi, this is the original order,
# dir transforms should make the order match the target relighting axes
uvMap[:, :, 1] = np.linspace(-1, 1, initShape[1]).reshape(-1, 1) * (
np.pi * 0.5 - np.pi / (initShape[1]) * 0.5) + np.pi * 0.5
uvMap[:, :, 0] = np.linspace(1, -1, initShape[0]).reshape(1, -1) * (
np.pi - 2.0 * np.pi / (initShape[0]) * 0.5) + np.pi * 0.5
uvMap = uvMap.reshape((-1, 2))
#angles to dirs,
orgDirs = SphToVec(uvMap)
# transform the dirs in two steps so that the dir in each pixel represents the dir in a mitsuba environment map.
# in fact the two steps is not that intuitive and can be replaced by one step,
# simply making the sampling axes compatible with the relighting axes [[1,0,0], [0,0,1], [0,-1, 0]]
#transform dirs into dirs in mitsuba
targetMat = np.row_stack([[1, 0, 0], [0, 0, 1], [0, 1, 0]])
relightDirs = targetMat.dot(orgDirs.T)
axis = normalize(axis)
sgImg = np.exp(mu * (relightDirs.T.dot(axis) - 1.0))
integral = 2.0 * np.pi / mu * (1.0 - np.exp(-2.0 * mu))
sgImg = sgImg / integral
mask = relightDirs.T.dot(maskAxis)
sgImg[mask < np.cos(np.deg2rad(maskDeg))] = 0
return np.reshape(color, (3)) * sgImg.reshape((res[1], res[0],1))
def loadVec(filePath, interC = " ", typeV = float):
vecs = []
with open(filePath, "r") as f:
while True:
line = f.readline()
if line == "":
break
if line[-1] == "\n":
line = line[:-1]
dir = [typeV(x) for x in line.split(interC)]
vecs.append(dir)
return vecs
def merge_two_dicts(x, y):
"""Given two dicts, merge them into a new dict as a shallow copy."""
z = x.copy()
z.update(y)
return z
def rotateVector(vector, axis, angle):
cos_ang = np.reshape(np.cos(angle),(-1));
sin_ang = np.reshape(np.sin(angle),(-1));
vector = np.reshape(vector,(-1,3))
axis = np.reshape(np.array(axis),(-1,3))
return vector * cos_ang[:,np.newaxis] + axis*np.dot(vector,np.transpose(axis))*(1-cos_ang)[:,np.newaxis] + np.cross(axis,vector) * sin_ang[:,np.newaxis]
def normalize(x):
if(len(np.shape(x)) == 1):
return x/np.linalg.norm(x)
else:
return x/np.linalg.norm(x,axis=1)[:,np.newaxis]
#return Phi(0, 2pi), Theta (0, pi) in rads
def VecToSph(coords):
coords = np.reshape(coords,(-1,3))
rads = np.zeros((coords.shape[0],2))
rads[:,0] = np.arctan2(coords[:,1], coords[:,0])
rads[rads<0] += 2.0 * np.pi
rads[:,1] = np.arccos(coords[:,2])
return rads
#Phi Theta
def SphToVec(coords):
coords = np.reshape(coords,(-1,2))
vec = np.zeros((coords.shape[0],3))
vec[:,0] = np.cos(coords[:,0])*np.sin(coords[:,1])
vec[:,1] = np.sin(coords[:,0])*np.sin(coords[:,1])
vec[:,2] = np.cos(coords[:,1])
return vec
def subPixels(img, xs, ys, bg=0):
height = img.shape[0]
width = img.shape[1]
xs = np.reshape(xs, -1)
ys = np.reshape(ys, -1)
ix0 = xs.astype(int)
iy0 = ys.astype(int)
ix1 = ix0+1
iy1 = iy0+1
badIds = []
ids = np.reshape(np.where(ix0 < 0), -1)
badIds = np.append(badIds, ids)
if len(ids) > 0:
ix0[ids]=0
ix1[ids]=0
ids = np.reshape(np.where(iy0 < 0), -1)
badIds = np.append(badIds, ids)
if len(ids) > 0:
iy0[ids] = 0
iy1[ids] = 0
ids = np.reshape(np.where(ix1 > width-1), -1)
badIds = np.append(badIds, ids)
if len(ids) > 0:
ix0[ids] = width-1
ix1[ids] = width-1
ids = np.reshape(np.where(iy1 > height - 1), -1)
badIds = np.append(badIds, ids)
if len(ids) > 0:
iy0[ids] = height - 1
iy1[ids] = height - 1
ratex = xs - ix0
ratey = ys - iy0
if len(img.shape) > 2:
ratex = ratex.reshape((-1,1))
ratey = ratey.reshape((-1, 1))
px0_y0 = img[(iy0,ix0)]
px0_y1 = img[(iy1,ix0)]
px1_y0 = img[(iy0,ix1)]
px1_y1 = img[(iy1,ix1)]
py0 = px0_y0 * (1.0-ratex) + px1_y0*ratex
py1 = px0_y1 * (1.0-ratex) + px1_y1*ratex
p = py0 * (1 - ratey) + py1 * ratey
badIds = badIds.astype(int)
if len(badIds) > 0:
p[badIds] = bg
return p
def subPix(img, x, y):
height = img.shape[0]
width = img.shape[1]
ix0 = int(x)
iy0 = int(y)
ix1 = ix0+1
iy1 = iy0+1
if ix0 < 0:
ix0=ix1=0
if iy0 < 0:
iy0=iy1=0
if ix1 > width-1:
ix0=ix1=width-1
if iy1 > height-1:
iy0=iy1=height-1
ratex = x - ix0
ratey = y - iy0
px0_y0 = img[iy0,ix0]
px0_y1 = img[iy1,ix0]
px1_y0 = img[iy0,ix1]
px1_y1 = img[iy1,ix1]
py0 = px0_y0 * (1.0-ratex) + px1_y0*ratex
py1 = px0_y1 * (1.0-ratex) + px1_y1*ratex
p = py0 * (1 - ratey) + py1 * ratey
return p
def load_pfm(filename):
color = None
width = None
height = None
scale = None
endian = None
file = open(filename,'rb')
header = file.readline().rstrip()
if header == 'PF':
color = True
elif header == 'Pf':
color = False
else:
raise Exception('Not a PFM file.')
dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline())
if dim_match:
width, height = map(int, dim_match.groups())
else:
raise Exception('Malformed PFM header.')
scale = float(file.readline().rstrip())
if scale < 0: # little-endian
endian = '<'
scale = -scale
else:
endian = '>' # big-endian
data = np.fromfile(file, endian + 'f')
shape = (height, width, 3) if color else (height, width)
data = np.reshape(data, shape)
reverseIds = range(len(data)-1, -1, -1)
out = data[reverseIds]
return out
'''
Save a Numpy array to a PFM file.
'''
def save_pfm(filename, image, scale = 1):
file = open(filename,'wb')
color = None
image = image.astype(np.float32)
if image.dtype.name != 'float32':
raise Exception('Image dtype must be float32.')
if len(image.shape) == 3 and image.shape[2] == 3: # color image
color = True
elif len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1: # greyscale
color = False
else:
raise Exception('Image must have H x W x 3, H x W x 1 or H x W dimensions.')
file.write('PF\n' if color else 'Pf\n')
file.write('%d %d\n' % (image.shape[1], image.shape[0]))
endian = image.dtype.byteorder
if endian == '<' or endian == '=' and sys.byteorder == 'little':
scale = -scale
file.write('%f\n' % scale)
reverseIds = range(len(image)-1, -1, -1)
out = image[reverseIds]
out.tofile(file)
def saveAsPly(filename, points, color = (255, 0, 0)):
color = np.reshape(color, (-1,3))
with open(filename, "w") as f:
f.write("ply\nformat ascii 1.0\n")
f.write("element vertex %d\n"%(len(points)))
f.write("property float x\nproperty float y\nproperty float z\nproperty uchar red\nproperty uchar green\nproperty uchar blue\n end_header")
for i,point in enumerate(points):
if len(color) != len(points):
f.write("\n%.5f %.5f %.5f %d %d %d"%(point[0], point[1], point[2], color[0][0], color[0][1], color[0][2]))
else:
f.write("\n%.5f %.5f %.5f %d %d %d"%(point[0], point[1], point[2], color[i][0], color[i][1], color[i][2]))
def make_non_exist_dir(path):
if not os.path.isdir(path):
os.mkdir(path)
def saveToPly(filename,verts,faces=None,norms=None,colors=None):
# Write header
ply_file = open(filename,'w')
ply_file.write("ply\n")
ply_file.write("format ascii 1.0\n")
ply_file.write("element vertex %d\n"%(verts.shape[0]))
if verts is not None:
ply_file.write("property float x\n")
ply_file.write("property float y\n")
ply_file.write("property float z\n")
if norms is not None:
ply_file.write("property float nx\n")
ply_file.write("property float ny\n")
ply_file.write("property float nz\n")
if colors is not None:
ply_file.write("property uchar red\n")
ply_file.write("property uchar green\n")
ply_file.write("property uchar blue\n")
if faces is not None:
ply_file.write("element face %d\n"%(faces.shape[0]))
ply_file.write("property list uchar int vertex_index\n")
ply_file.write("end_header\n")
# Write vertex list
for i in range(verts.shape[0]):
if verts is not None:
ply_file.write("%f %f %f "%(verts[i,0],verts[i,1],verts[i,2]))
if norms is not None:
ply_file.write("%f %f %f "%(norms[i,0],norms[i,1],norms[i,2]))
if colors is not None:
ply_file.write("%d %d %d "%(colors[i,0],colors[i,1],colors[i,2]))
ply_file.write('\n')
# Write face list
if faces is not None:
for i in range(faces.shape[0]):
ply_file.write("3 %d %d %d\n"%(faces[i,0],faces[i,1],faces[i,2]))
ply_file.close()
def saveToPlyWithBrdf(filename,verts,faces=None,norms=None,colors=None,albedo=None,
roughness=None):
# Write header
ply_file = open(filename,'w')
ply_file.write("ply\n")
ply_file.write("format ascii 1.0\n")
ply_file.write("element vertex %d\n"%(verts.shape[0]))
if verts is not None:
ply_file.write("property float x\n")
ply_file.write("property float y\n")
ply_file.write("property float z\n")
if norms is not None:
ply_file.write("property float nx\n")
ply_file.write("property float ny\n")
ply_file.write("property float nz\n")
if colors is not None:
ply_file.write("property uchar red\n")
ply_file.write("property uchar green\n")
ply_file.write("property uchar blue\n")
if albedo is not None:
ply_file.write("property albedo uchar\n")
ply_file.write("property albedo uchar\n")
ply_file.write("property albedo uchar\n")
if roughness is not None:
ply_file.write("property roughness uchar\n")
ply_file.write("property roughness uchar\n")
ply_file.write("property roughness uchar\n")
if faces is not None:
ply_file.write("element face %d\n"%(faces.shape[0]))
ply_file.write("property list uchar int vertex_index\n")
ply_file.write("end_header\n")
# Write vertex list
for i in range(verts.shape[0]):
if verts is not None:
ply_file.write("%f %f %f "%(verts[i,0],verts[i,1],verts[i,2]))
if norms is not None:
ply_file.write("%f %f %f "%(norms[i,0],norms[i,1],norms[i,2]))
if colors is not None:
ply_file.write("%d %d %d "%(colors[i,0],colors[i,1],colors[i,2]))
if albedo is not None:
ply_file.write("%d %d %d "%(albedo[i,0], albedo[i,1], albedo[i,2]))
if roughness is not None:
ply_file.write("%d %d %d "%(roughness[i,0],roughness[i,1],roughness[i,2]))
ply_file.write('\n')
# Write face list
if faces is not None:
for i in range(faces.shape[0]):
ply_file.write("3 %d %d %d\n"%(faces[i,0],faces[i,1],faces[i,2]))
ply_file.close()