-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathargs_file.py
73 lines (72 loc) · 4.72 KB
/
args_file.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import argparse
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training for iResNets')
parser.add_argument('--data', metavar='DIR',
help='path to dataset')
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet',
help='model architecture (default: resnet)')
parser.add_argument('--result_path', default='results', type=str,
help=' directory path where to save the results')
parser.add_argument('--model_depth', default=50, type=int,
help='depth of resnet (50 | 101 | 152)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--world-size', default=-1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
help='node rank for distributed training')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--multiprocessing-distributed', action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
parser.add_argument('--n_classes', default=1000, type=int,
help='Number of classes. (default 1000) ')
parser.add_argument('--lr_scheduler', default='MultiStepLR', type=str,
help='The learning rate scheduler. Options: MultiStepLR')
parser.add_argument('--lr_steps', default=[30, 60, 80], type=int, nargs="+",
metavar='LRSteps', help='epochs to decay learning rate by 10')
parser.add_argument('--lr_reduce_factor', default=0.1, type=float,
help='Factor by which the learning rate will be reduced. new_lr = lr * factor. Default: 0.1.')
parser.add_argument('--nesterov', action='store_true', default=False, help='Nesterov momentum')
parser.add_argument('--zero_init_residual', action='store_true',
help='If true, Zero-initialize the last BN in each residual branch,')
parser.add_argument('--groups', default=None, type=int,
help='the number of groups to split the spatial convolution')
parser.add_argument('--train_crop_size', default=224, type=int,
help='The crop size for training. default: 224')
parser.add_argument('--val_resize', default=256, type=int,
help='The value to resize the shorter size of the image (for validation). default: 256')
parser.add_argument('--val_crop_size', default=224, type=int,
help='The crop size for validation. default: 224')