-
-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathlms_api.py
180 lines (157 loc) · 6.44 KB
/
lms_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#lms_api.py
import requests
import json
from typing import List, Union, Optional
import aiohttp
import asyncio
import logging
logger = logging.getLogger(__name__)
def create_lmstudio_compatible_embedding(api_base: str, model: str, input: Union[str, List[str]], api_key: Optional[str] = None) -> List[float]:
"""
Create embeddings using an lmstudio-compatible API.
:param api_base: The base URL for the API
:param model: The name of the model to use for embeddings
:param input: A string or list of strings to embed
:param api_key: The API key (if required)
:return: A list of embeddings
"""
# Normalize the API base URL
api_base = api_base.rstrip('/')
if not api_base.endswith('/v1'):
api_base += '/v1'
url = f"{api_base}/embeddings"
headers = {
"Content-Type": "application/json"
}
if api_key:
headers["Authorization"] = f"Bearer {api_key}"
payload = {
"model": model,
"input": input,
"encoding_format": "float"
}
try:
response = requests.post(url, headers=headers, json=payload)
response.raise_for_status()
result = response.json()
if "data" in result and len(result["data"]) > 0 and "embedding" in result["data"][0]:
# If multiple embeddings are returned, we'll just use the first one
return result["data"][0]["embedding"]
else:
raise ValueError("Unexpected response format: 'embedding' data not found")
except requests.RequestException as e:
raise RuntimeError(f"Error calling embedding API: {str(e)}")
async def send_lmstudio_request(api_url, base64_images, model, system_message, user_message, messages, seed, temperature,
max_tokens, top_k, top_p, repeat_penalty, stop, tools=None, tool_choice=None):
headers = {
"Content-Type": "application/json"
}
data = {
"model": model,
"messages": prepare_lmstudio_messages(system_message, user_message, messages, base64_images),
"temperature": temperature,
"max_tokens": max_tokens,
"presence_penalty": repeat_penalty,
"top_p": top_p,
"top_k": top_k,
"seed": seed
}
if stop:
data["stop"] = stop
if tools:
data["functions"] = tools
if tool_choice:
data["function_call"] = tool_choice
try:
async with aiohttp.ClientSession() as session:
async with session.post(api_url, headers=headers, json=data) as response:
response.raise_for_status()
response_data = await response.json()
choices = response_data.get('choices', [])
if choices:
choice = choices[0]
message = choice.get('message', {})
if "function_call" in message:
return {
"choices": [{
"message": {
"function_call": {
"name": message["function_call"]["name"],
"arguments": message["function_call"]["arguments"]
}
}
}]
}
else:
generated_text = message.get('content', '')
return {
"choices": [{
"message": {
"content": generated_text
}
}]
}
else:
error_msg = "Error: No valid choices in the LMStudio response."
print(error_msg)
return {"choices": [{"message": {"content": error_msg}}]}
except aiohttp.ClientError as e:
error_msg = f"Error in LMStudio API request: {e}"
print(error_msg)
return {"choices": [{"message": {"content": error_msg}}]}
def prepare_lmstudio_messages(base64_images, system_message, user_message, messages):
lmstudio_messages = []
if system_message:
lmstudio_messages.append({"role": "system", "content": system_message})
for message in messages:
role = message["role"]
content = message["content"]
if role == "system":
lmstudio_messages.append({"role": "system", "content": content})
elif role == "user":
lmstudio_messages.append({"role": "user", "content": content})
elif role == "assistant":
lmstudio_messages.append({"role": "assistant", "content": content})
# Add the current user message with all images if provided
if base64_images:
content = [{"type": "text", "text": user_message}]
for base64_image in base64_images:
content.append({
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}",
}
})
lmstudio_messages.append({
"role": "user",
"content": content
})
print(f"Number of images sent: {len(base64_images)}")
else:
lmstudio_messages.append({"role": "user", "content": user_message})
return lmstudio_messages
"""def prepare_lmstudio_messages(system_message, user_message, messages, base64_images=None):
lmstudio_messages = [
{"role": "system", "content": system_message},
]
for message in messages:
if isinstance(message["content"], list):
# Handle multi-modal content
content = []
for item in message["content"]:
if item["type"] == "text":
content.append(item["text"])
elif item["type"] == "image_url":
content.append(f"[Image data: {item['image_url']['url']}]")
lmstudio_messages.append({"role": message["role"], "content": " ".join(content)})
else:
lmstudio_messages.append(message)
if base64_images:
image_content = "\n".join([f"[Image data: data:image/jpeg;base64,{img}]" for img in base64_images])
lmstudio_messages.append({
"role": "user",
"content": f"{user_message}\n{image_content}"
})
else:
lmstudio_messages.append({"role": "user", "content": user_message})
return lmstudio_messages"""