-
-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathutils.py
1202 lines (1031 loc) · 50.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# utils.py
import os
import io
import re
import yaml
import json
import torch
import torchvision
import cv2
import base64
import logging
import datetime
import requests
import numpy as np
from io import BytesIO
from aiohttp import web
from dotenv import load_dotenv
from PIL import Image, ImageOps, ImageSequence
from typing import Tuple, Optional, Dict, Union, List, Any
import node_helpers
from torchvision.transforms import functional as TF
import folder_paths
from typing import Union, List, Tuple
logger = logging.getLogger(__name__)
def resize_image_max_side(img, max_size):
"""Resize image so its longest side is max_size while maintaining aspect ratio"""
ratio = max_size / max(img.size)
if ratio < 1: # Only resize if image is larger than max_size
new_size = tuple(int(dim * ratio) for dim in img.size)
return img.resize(new_size, Image.LANCZOS)
return img
def prepare_batch_images(images):
"""
Convert images to list of batches.
Handles tensor, list, and single image inputs while preserving dimensions.
Args:
images: torch.Tensor or list of tensors
Returns:
List of image tensors
"""
try:
if images is None:
return []
if isinstance(images, torch.Tensor):
# Handle 4D tensor [B,H,W,C] - split into list of [H,W,C]
if images.dim() == 4:
return [images[i] for i in range(images.shape[0])]
# Handle 3D tensor [H,W,C] - wrap in list
elif images.dim() == 3:
return [images]
else:
raise ValueError(f"Invalid tensor dimensions: {images.dim()}")
# Handle list input - validate each element
if isinstance(images, list):
for i, img in enumerate(images):
if not isinstance(img, torch.Tensor):
raise ValueError(f"Image {i} is not a tensor")
return images
# Handle single image
return [images]
except Exception as e:
logger.error(f"Error in prepare_batch_images: {str(e)}")
return []
def process_auto_mode_images(images, mask=None, batch_size=4):
"""
Process images and masks for auto mode with proper mask dimensionality handling.
Args:
images: Input images tensor [B,H,W,C] or list of tensors
mask: Mask tensor [B,H,W] or [B,1,H,W] or list of tensors
batch_size: Maximum size of each batch (default 4)
Returns:
Tuple of (image_batches, mask_batches) where each is a list of tensors
"""
try:
# Convert images to list format
if isinstance(images, torch.Tensor):
if images.dim() == 4: # [B,H,W,C]
images = [images[i] for i in range(images.shape[0])]
elif images.dim() == 3: # [H,W,C]
images = [images]
else:
raise ValueError(f"Invalid image tensor dimensions: {images.dim()}")
# Split images into batches
image_batches = []
current_batch = []
for img in images:
if len(current_batch) == batch_size:
image_batches.append(torch.stack(current_batch))
current_batch = []
current_batch.append(img)
if current_batch: # Don't forget the last batch
image_batches.append(torch.stack(current_batch))
# Process masks
mask_batches = []
if mask is not None:
# Standardize mask format
if isinstance(mask, torch.Tensor):
# Handle different mask dimensions
if mask.dim() == 2: # [H,W]
mask = mask.unsqueeze(0) # -> [1,H,W]
elif mask.dim() == 3: # [B,H,W] or [1,H,W]
if mask.shape[0] != len(images):
# Broadcast mask to match batch size
mask = mask.repeat(len(images), 1, 1)
elif mask.dim() == 4: # [B,1,H,W] or similar
mask = mask.squeeze(1) # Remove channel dim -> [B,H,W]
# Split mask into batches matching image batches
start_idx = 0
for img_batch in image_batches:
batch_size = img_batch.size(0)
mask_batch = mask[start_idx:start_idx + batch_size]
mask_batches.append(mask_batch)
start_idx += batch_size
else:
# Handle list of masks
mask_list = mask if isinstance(mask, list) else [mask] * len(images)
start_idx = 0
for img_batch in image_batches:
batch_size = img_batch.size(0)
mask_slice = mask_list[start_idx:start_idx + batch_size]
# Convert and stack masks
mask_tensors = []
for m in mask_slice:
if isinstance(m, torch.Tensor):
if m.dim() == 2:
m = m.unsqueeze(0) # Add batch dim
m = m.unsqueeze(-1) # Add channel dim at end
else:
# Convert non-tensor masks
m = torch.tensor(m, dtype=torch.float32)
if m.dim() == 2:
m = m.unsqueeze(0).unsqueeze(-1)
elif m.dim() == 3:
m = m.unsqueeze(-1)
mask_tensors.append(m)
mask_batch = torch.stack(mask_tensors)
mask_batches.append(mask_batch)
start_idx += batch_size
else:
# Create default masks matching image batches
for img_batch in image_batches:
mask_batch = torch.ones((img_batch.size(0), img_batch.size(1),
img_batch.size(2)), # Removed extra dimension
dtype=torch.float32,
device=img_batch.device)
mask_batches.append(mask_batch)
return image_batches, mask_batches
except Exception as e:
logger.error(f"Error in process_auto_mode_images: {str(e)}")
raise
def convert_images_for_api(images, target_format='tensor'):
"""
Convert images to the specified format for API consumption.
Supports conversion to: tensor, base64, pil
"""
if images is None:
return None
# Handle single tensor input with ComfyUI compatibility
if isinstance(images, torch.Tensor):
if images.dim() == 3: # Single image
images = images.unsqueeze(0)
# Permute tensor to ComfyUI format (B, H, W, C) -> (B, C, H, W)
images = images.permute(0, 3, 1, 2)
if target_format == 'tensor':
return images
elif target_format == 'base64':
return [tensor_to_base64(img) for img in images]
elif target_format == 'pil':
return [TF.to_pil_image(img) for img in images]
else:
raise ValueError(f"Unsupported target format for tensor: {target_format}")
# Handle list of tensors input
elif isinstance(images, list) and all(isinstance(x, torch.Tensor) for x in images):
# Filter out tensors with unsupported channel counts
supported_images = []
for idx, img in enumerate(images):
if img.shape[0] in [1, 3]:
supported_images.append(img)
elif img.shape[0] > 3:
logger.warning(f"Skipping tensor at index {idx} with {img.shape[0]} channels.")
else:
logger.warning(f"Skipping tensor at index {idx} with unsupported number of channels: {img.shape[0]}")
if not supported_images:
raise ValueError("No supported image tensors found in the input list.")
if target_format == 'tensor':
return torch.stack(supported_images).permute(0, 3, 1, 2) # Ensure correct format
elif target_format == 'base64':
return [tensor_to_base64(img) for img in supported_images]
elif target_format == 'pil':
return [TF.to_pil_image(img) for img in supported_images]
else:
raise ValueError(f"Unsupported target format for list of tensors: {target_format}")
# Handle base64 input
elif isinstance(images, str) or (isinstance(images, list) and all(isinstance(x, str) for x in images)):
base64_list = [images] if isinstance(images, str) else images
if target_format == 'base64':
return base64_list
# Convert base64 to PIL first
pil_images = [base64_to_pil(b64) for b64 in base64_list]
if target_format == 'pil':
return pil_images
elif target_format == 'tensor':
tensors = [pil_to_tensor(img) for img in pil_images]
return torch.stack(tensors).permute(0, 2, 3, 1) # Convert to ComfyUI format (B,H,W,C)
else:
raise ValueError(f"Unsupported target format for base64 input: {target_format}")
# Handle list of PIL images input
elif isinstance(images, (list, tuple)) and all(isinstance(x, Image.Image) for x in images):
if target_format == 'pil':
return images
elif target_format == 'base64':
return [pil_image_to_base64(img) for img in images]
elif target_format == 'tensor':
tensors = [pil_to_tensor(img) for img in images]
return torch.stack(tensors).permute(0, 2, 3, 1) # Maintain ComfyUI format
else:
raise ValueError(f"Unsupported target format for PIL input: {target_format}")
# If none of the above conditions are met, attempt to convert using the default method
# Ensure that images can be saved (i.e., are PIL Images)
else:
try:
encoded_images = []
for img in images:
if not isinstance(img, Image.Image):
raise ValueError(f"Expected PIL.Image, got {type(img)}")
buffered = BytesIO()
img.save(buffered, format="PNG") # Adjust format if needed
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
encoded_images.append(img_str)
return encoded_images
except Exception as e:
raise ValueError(f"Unsupported image format or target format: {target_format}. Error: {str(e)}") from e
def convert_single_image(image, target_format):
"""Helper function to convert a single image"""
if isinstance(image, str) and image.startswith('data:image'):
# Convert base64 to PIL
base64_data = image.split('base64,')[1]
image_data = base64.b64decode(base64_data)
image = Image.open(BytesIO(image_data))
if target_format == 'pil':
return image
elif target_format == 'tensor':
return pil_to_tensor(image)
elif target_format == 'base64':
return pil_image_to_base64(image)
def load_placeholder_image(placeholder_image_path):
# Ensure the placeholder image exists
if not os.path.exists(placeholder_image_path):
# Create a proper RGB placeholder image
placeholder = Image.new('RGB', (512, 512), color=(73, 109, 137))
os.makedirs(os.path.dirname(placeholder_image_path), exist_ok=True)
placeholder.save(placeholder_image_path)
img = node_helpers.pillow(Image.open, placeholder_image_path)
output_images = []
output_masks = []
w, h = None, None
excluded_formats = ['MPO']
for i in ImageSequence.Iterator(img):
i = node_helpers.pillow(ImageOps.exif_transpose, i)
if i.mode == 'I':
i = i.point(lambda i: i * (1 / 255))
image = i.convert("RGB")
if len(output_images) == 0:
w = image.size[0]
h = image.size[1]
if image.size[0] != w or image.size[1] != h:
continue
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
if 'A' in i.getbands():
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
mask = 1. - torch.from_numpy(mask)
else:
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
output_images.append(image)
output_masks.append(mask.unsqueeze(0))
if len(output_images) > 1 and img.format not in excluded_formats:
output_image = torch.cat(output_images, dim=0)
output_mask = torch.cat(output_masks, dim=0)
else:
output_image = output_images[0]
output_mask = output_masks[0]
return (output_image, output_mask)
def process_images_for_comfy(images, placeholder_image_path=None, response_key='data', field_name='b64_json', field2_name=""):
"""Process images for ComfyUI, ensuring consistent sizes."""
def _process_single_image(image):
try:
if image is None:
return load_placeholder_image(placeholder_image_path)
# Handle JSON/API response
if isinstance(image, dict):
try:
# Only attempt to extract from response if response_key is provided
if response_key and response_key in image:
items = image[response_key]
if isinstance(items, list):
for item in items:
# Only attempt to get field_name if it's provided
if field2_name and field_name:
image_data = item.get(field2_name, {}).get(field_name)
elif field_name:
image_data = item.get(field_name)
else:
continue
if image_data:
# Convert the first valid image found
if isinstance(image_data, str):
if image_data.startswith(('data:image', 'http:', 'https:')):
image = image_data # Will be handled by URL processing below
else:
# Handle base64 directly
image_data = base64.b64decode(image_data)
image = Image.open(BytesIO(image_data))
break
if isinstance(image, dict):
logger.warning(f"No valid image found in response under key '{response_key}'")
return load_placeholder_image(placeholder_image_path)
except Exception as e:
logger.error(f"Error processing API response: {str(e)}")
return load_placeholder_image(placeholder_image_path)
# Convert various input types to PIL Image
if isinstance(image, torch.Tensor):
# Ensure tensor is in correct format [B,H,W,C] or [H,W,C]
if image.dim() == 4:
if image.shape[-1] != 3: # Wrong channel dimension
image = image.squeeze(1) # Remove channel dim if [B,1,H,W]
if image.shape[-1] != 3: # Still wrong shape
image = image.permute(0, 2, 3, 1) # [B,C,H,W] -> [B,H,W,C]
image = image.squeeze(0) # Remove batch dim
elif image.dim() == 3 and image.shape[0] == 3:
image = image.permute(1, 2, 0) # [C,H,W] -> [H,W,C]
# Convert to numpy and scale to 0-255 range
image = (image.cpu().numpy() * 255).clip(0, 255).astype(np.uint8)
image = Image.fromarray(image)
elif isinstance(image, np.ndarray):
# Handle numpy arrays
if image.dtype != np.uint8:
image = (image * 255).clip(0, 255).astype(np.uint8)
if image.shape[-1] != 3 and image.shape[0] == 3:
image = np.transpose(image, (1, 2, 0))
image = Image.fromarray(image)
elif isinstance(image, str):
if image.startswith('data:image'):
base64_data = image.split('base64,')[1]
image_data = base64.b64decode(base64_data)
image = Image.open(BytesIO(image_data)).convert('RGB')
elif image.startswith(('http:', 'https:')):
response = requests.get(image)
image = Image.open(BytesIO(response.content)).convert('RGB')
else:
image = Image.open(image).convert('RGB')
# Ensure we have a PIL Image at this point
if not isinstance(image, Image.Image):
raise ValueError(f"Failed to convert to PIL Image: {type(image)}")
# Convert PIL to tensor in ComfyUI format
img_array = np.array(image).astype(np.float32) / 255.0
img_tensor = torch.from_numpy(img_array)
# Ensure NHWC format
if img_tensor.dim() == 3: # [H,W,C]
img_tensor = img_tensor.unsqueeze(0) # Add batch dim: [1,H,W,C]
# Create mask
mask_tensor = torch.ones((1, img_tensor.shape[1], img_tensor.shape[2]),
dtype=torch.float32)
return img_tensor, mask_tensor
except Exception as e:
logger.error(f"Error processing single image: {str(e)}")
return load_placeholder_image(placeholder_image_path)
try:
# Handle API responses
if isinstance(images, dict) and response_key in images:
# Process each item in API response
all_tensors = []
all_masks = []
items = images[response_key]
if isinstance(items, list):
for item in items:
try:
img_tensor, mask_tensor = _process_single_image({response_key: [item]})
all_tensors.append(img_tensor)
all_masks.append(mask_tensor)
except Exception as e:
logger.error(f"Error processing response item: {str(e)}")
continue
if all_tensors:
return torch.cat(all_tensors, dim=0), torch.cat(all_masks, dim=0)
# If no valid images processed, return placeholder
return load_placeholder_image(placeholder_image_path)
# Handle list/batch of images
if isinstance(images, (list, tuple)):
all_tensors = []
all_masks = []
for img in images:
try:
img_tensor, mask_tensor = _process_single_image(img)
all_tensors.append(img_tensor)
all_masks.append(mask_tensor)
except Exception as e:
logger.error(f"Error processing batch image: {str(e)}")
continue
if all_tensors:
return torch.cat(all_tensors, dim=0), torch.cat(all_masks, dim=0)
return load_placeholder_image(placeholder_image_path)
# Handle single image
return _process_single_image(images)
except Exception as e:
logger.error(f"Error in process_images_for_comfy: {str(e)}")
return _process_single_image(None)
def process_mask(retrieved_mask, image_tensor):
"""
Process the retrieved_mask to ensure it's in the correct format.
The mask should be a tensor of shape (B, H, W), matching image_tensor's batch size and dimensions.
"""
try:
# Handle torch.Tensor
if isinstance(retrieved_mask, torch.Tensor):
# Normalize dimensions
if retrieved_mask.dim() == 2: # (H, W)
retrieved_mask = retrieved_mask.unsqueeze(0) # Add batch dimension
elif retrieved_mask.dim() == 3:
if retrieved_mask.shape[0] != image_tensor.shape[0]:
# Adjust batch size
retrieved_mask = retrieved_mask.repeat(image_tensor.shape[0], 1, 1)
elif retrieved_mask.dim() == 4:
# If mask has a channel dimension, reduce it
retrieved_mask = retrieved_mask.squeeze(1)
else:
raise ValueError(f"Invalid mask tensor dimensions: {retrieved_mask.shape}")
# Ensure proper format
retrieved_mask = retrieved_mask.float()
if retrieved_mask.max() > 1.0:
retrieved_mask = retrieved_mask / 255.0
# Ensure mask dimensions match image dimensions
if retrieved_mask.shape[1:] != image_tensor.shape[2:]:
# Resize mask to match image dimensions
retrieved_mask = torch.nn.functional.interpolate(
retrieved_mask.unsqueeze(1),
size=(image_tensor.shape[2], image_tensor.shape[3]),
mode='nearest'
).squeeze(1)
return retrieved_mask
# Handle PIL Image
elif isinstance(retrieved_mask, Image.Image):
mask_array = np.array(retrieved_mask.convert('L')).astype(np.float32) / 255.0
mask_tensor = torch.from_numpy(mask_array)
mask_tensor = mask_tensor.unsqueeze(0) # Add batch dimension
# Adjust batch size
if mask_tensor.shape[0] != image_tensor.shape[0]:
mask_tensor = mask_tensor.repeat(image_tensor.shape[0], 1, 1)
# Resize if needed
if mask_tensor.shape[1:] != image_tensor.shape[2:]:
mask_tensor = torch.nn.functional.interpolate(
mask_tensor.unsqueeze(1),
size=(image_tensor.shape[2], image_tensor.shape[3]),
mode='nearest'
).squeeze(1)
return mask_tensor
# Handle numpy array
elif isinstance(retrieved_mask, np.ndarray):
mask_array = retrieved_mask.astype(np.float32)
if mask_array.max() > 1.0:
mask_array = mask_array / 255.0
if mask_array.ndim == 2:
pass # (H, W)
elif mask_array.ndim == 3:
mask_array = np.mean(mask_array, axis=2) # Convert to grayscale
else:
raise ValueError(f"Invalid mask array dimensions: {mask_array.shape}")
mask_tensor = torch.from_numpy(mask_array)
mask_tensor = mask_tensor.unsqueeze(0) # Add batch dimension
# Adjust batch size
if mask_tensor.shape[0] != image_tensor.shape[0]:
mask_tensor = mask_tensor.repeat(image_tensor.shape[0], 1, 1)
# Resize if needed
if mask_tensor.shape[1:] != image_tensor.shape[2:]:
mask_tensor = torch.nn.functional.interpolate(
mask_tensor.unsqueeze(1),
size=(image_tensor.shape[2], image_tensor.shape[3]),
mode='nearest'
).squeeze(1)
return mask_tensor
# Handle other types (e.g., file paths, base64 strings)
elif isinstance(retrieved_mask, str):
# Attempt to process as file path or base64 string
if os.path.exists(retrieved_mask):
pil_image = Image.open(retrieved_mask).convert('L')
elif retrieved_mask.startswith('data:image'):
base64_data = retrieved_mask.split('base64,')[1]
image_data = base64.b64decode(base64_data)
pil_image = Image.open(BytesIO(image_data)).convert('L')
else:
raise ValueError(f"Invalid mask string: {retrieved_mask}")
return process_mask(pil_image, image_tensor)
else:
raise ValueError(f"Unsupported mask type: {type(retrieved_mask)}")
except Exception as e:
logger.error(f"Error processing mask: {str(e)}")
# Return a default mask matching the image dimensions
return torch.ones((image_tensor.shape[0], image_tensor.shape[2], image_tensor.shape[3]), dtype=torch.float32)
def convert_mask_to_grayscale_alpha(mask_input):
"""
Convert mask to grayscale alpha channel.
Handles tensors, PIL images and numpy arrays.
Returns tensor in shape [B,1,H,W].
"""
if isinstance(mask_input, torch.Tensor):
# Handle tensor input
if mask_input.dim() == 2: # [H,W]
return mask_input.unsqueeze(0).unsqueeze(0) # Add batch and channel dims
elif mask_input.dim() == 3: # [C,H,W] or [B,H,W]
if mask_input.shape[0] in [1,3,4]: # Assume channel-first
if mask_input.shape[0] == 4: # Use alpha channel
return mask_input[3:4].unsqueeze(0)
else: # Convert to grayscale
weights = torch.tensor([0.299, 0.587, 0.114]).to(mask_input.device)
return (mask_input * weights.view(-1,1,1)).sum(0).unsqueeze(0).unsqueeze(0)
else: # Assume batch dimension
return mask_input.unsqueeze(1) # Add channel dim
elif mask_input.dim() == 4: # [B,C,H,W]
if mask_input.shape[1] == 4: # Use alpha channel
return mask_input[:,3:4]
else: # Convert to grayscale
weights = torch.tensor([0.299, 0.587, 0.114]).to(mask_input.device)
return (mask_input * weights.view(1,-1,1,1)).sum(1).unsqueeze(1)
elif isinstance(mask_input, Image.Image):
# Convert PIL image to grayscale
mask = mask_input.convert('L')
tensor = torch.from_numpy(np.array(mask)).float() / 255.0
return tensor.unsqueeze(0).unsqueeze(0) # Add batch and channel dims
elif isinstance(mask_input, np.ndarray):
# Handle numpy array
if mask_input.ndim == 2: # [H,W]
tensor = torch.from_numpy(mask_input).float()
return tensor.unsqueeze(0).unsqueeze(0)
elif mask_input.ndim == 3: # [H,W,C]
if mask_input.shape[2] == 4: # Use alpha channel
tensor = torch.from_numpy(mask_input[:,:,3]).float()
else: # Convert to grayscale
tensor = torch.from_numpy(np.dot(mask_input[...,:3], [0.299, 0.587, 0.114])).float()
return tensor.unsqueeze(0).unsqueeze(0)
raise ValueError(f"Unsupported mask input type: {type(mask_input)}")
def tensor_to_base64(tensor: torch.Tensor) -> str:
"""Convert a tensor to a base64-encoded PNG image string."""
try:
# Ensure the tensor is in [0, 1] range
tensor = torch.clamp(tensor, 0, 1)
# Handle different tensor dimensions
if tensor.dim() == 3:
# [C, H, W]
if tensor.shape[0] == 1:
# Grayscale image, convert to RGB by repeating channels
image = tensor.squeeze(0).permute(1, 2, 0).cpu().numpy() # [H, W, C]
image = np.repeat(image, 3, axis=2)
elif tensor.shape[0] == 3:
# RGB image
image = tensor.permute(1, 2, 0).cpu().numpy()
else:
# Handle tensors with more than 3 channels: select the first 3 channels
logger.warning(f"Unsupported number of channels: {tensor.shape[0]}. Selecting first 3 channels.")
if tensor.shape[0] >= 3:
image = tensor[:3, :, :].permute(1, 2, 0).cpu().numpy()
else:
raise ValueError(f"Unsupported number of channels: {tensor.shape[0]}")
elif tensor.dim() == 2:
# [H, W] Grayscale image
image = tensor.unsqueeze(-1).cpu().numpy()
image = np.repeat(image, 3, axis=2)
else:
raise ValueError(f"Unsupported tensor shape for conversion: {tensor.shape}")
# Convert to uint8
image = (image * 255).astype(np.uint8)
# Create PIL Image
pil_image = Image.fromarray(image)
# Save image to buffer
buffered = BytesIO()
pil_image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return img_str
except Exception as e:
logger.error(f"Error converting tensor to base64: {str(e)}", exc_info=True)
raise
def tensor_to_pil(tensor):
tensor = tensor.cpu()
tensor = tensor.squeeze(0) if tensor.dim() == 4 else tensor
tensor = tensor.permute(1, 2, 0) if tensor.shape[0] in [1, 3] else tensor
tensor = tensor.numpy()
tensor = np.clip(tensor * 255, 0, 255).astype(np.uint8)
return Image.fromarray(tensor)
def pil_to_tensor(pil_image):
# Convert PIL image to tensor
tensor = torch.from_numpy(np.array(pil_image)).float() / 255.0
return tensor.permute(2, 0, 1) if tensor.dim() == 3 else tensor.unsqueeze(0)
def base64_to_pil(base64_str):
"""Convert base64 string to PIL Image"""
if base64_str.startswith('data:image'):
base64_str = base64_str.split('base64,')[1]
image_data = base64.b64decode(base64_str)
return Image.open(BytesIO(image_data))
def pil_image_to_base64(pil_image: Image.Image) -> str:
"""Converts a PIL Image to a data URL."""
try:
buffered = io.BytesIO()
pil_image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return f"data:image/png;base64,{img_str}"
except Exception as e:
logger.error(f"Error converting image to data URL: {str(e)}", exc_info=True)
raise
def clean_text(generated_text, remove_weights=True, remove_author=True):
"""Clean text while preserving intentional line breaks."""
# Split into lines first to preserve breaks
lines = generated_text.split('\n')
cleaned_lines = []
for line in lines:
if line.strip(): # Only process non-empty lines
# Remove author attribution if requested
if remove_author:
line = re.sub(r"\bby:.*", "", line)
# Remove weights if requested
if remove_weights:
line = re.sub(r"\(([^)]*):[\d\.]*\)", r"\1", line)
line = re.sub(r"(\w+):[\d\.]*(?=[ ,]|$)", r"\1", line)
# Remove markup tags
line = re.sub(r"<[^>]*>", "", line)
# Remove lonely symbols and formatting
line = re.sub(r"(?<=\s):(?=\s)", "", line)
line = re.sub(r"(?<=\s);(?=\s)", "", line)
line = re.sub(r"(?<=\s),(?=\s)", "", line)
line = re.sub(r"(?<=\s)#(?=\s)", "", line)
# Clean up extra spaces while preserving line structure
line = re.sub(r"\s{2,}", " ", line)
line = re.sub(r"\.,", ",", line)
line = re.sub(r",,", ",", line)
# Remove audio tags from the line
if "<audio" in line:
print(f"iF_prompt_MKR: Audio has been generated.")
line = re.sub(r"<audio.*?>.*?</audio>", "", line)
cleaned_lines.append(line.strip())
# Join with newlines to preserve line structure
return "\n".join(cleaned_lines)
def get_api_key(api_key_name, engine):
local_engines = ["ollama", "llamacpp", "kobold", "lmstudio", "textgen", "sentence_transformers", "transformers"]
if engine.lower() in local_engines:
print(f"You are using {engine} as the engine, no API key is required.")
return "1234"
# Try to get the key from .env first
load_dotenv()
api_key = os.getenv(api_key_name)
if api_key:
print(f"API key for {api_key_name} found in .env file")
return api_key
# If .env is empty, get the key from os.environ
api_key = os.getenv(api_key_name)
if api_key:
print(f"API key for {api_key_name} found in environment variables")
return api_key
print(f"API key for {api_key_name} not found in .env file or environment variables")
raise ValueError(f"{api_key_name} not found. Please set it in your .env file or as an environment variable.")
def get_models(engine, base_ip, port, api_key):
if engine == "ollama":
api_url = f"http://{base_ip}:{port}/api/tags"
try:
response = requests.get(api_url)
response.raise_for_status()
models = [model["name"] for model in response.json().get("models", [])]
return models
except Exception as e:
print(f"Failed to fetch models from Ollama: {e}")
return []
elif engine == "lmstudio":
api_url = f"http://{base_ip}:{port}/v1/models"
try:
print(f"Attempting to connect to {api_url}")
response = requests.get(api_url, timeout=10)
print(f"Response status code: {response.status_code}")
print(f"Response content: {response.text}")
if response.status_code == 200:
data = response.json()
models = [model["id"] for model in data["data"]]
return models
else:
print(f"Failed to fetch models from LM Studio. Status code: {response.status_code}")
return []
except requests.exceptions.RequestException as e:
print(f"Error connecting to LM Studio server: {e}")
return []
elif engine == "textgen":
api_url = f"http://{base_ip}:{port}/v1/internal/model/list"
try:
response = requests.get(api_url)
response.raise_for_status()
models = response.json()["model_names"]
return models
except Exception as e:
print(f"Failed to fetch models from text-generation-webui: {e}")
return []
elif engine == "kobold":
api_url = f"http://{base_ip}:{port}/api/v1/model"
try:
response = requests.get(api_url)
response.raise_for_status()
model = response.json()["result"]
return [model]
except Exception as e:
print(f"Failed to fetch models from Kobold: {e}")
return []
elif engine == "llamacpp":
api_url = f"http://{base_ip}:{port}/v1/models"
try:
response = requests.get(api_url)
response.raise_for_status()
models = [model["id"] for model in response.json()["data"]]
return models
except Exception as e:
print(f"Failed to fetch models from llama.cpp: {e}")
return []
elif engine == "vllm":
api_url = f"http://{base_ip}:{port}/v1/models"
try:
response = requests.get(api_url)
response.raise_for_status()
# Adapt this based on vLLM"s actual API response structure
models = [model["id"] for model in response.json()["data"]]
return models
except Exception as e:
print(f"Failed to fetch models from vLLM: {e}")
return []
elif engine == "openai":
fallback_models = [
"tts-l-hd", "dall-e-3", "whisper-I", "text-embedding-3-large",
"text-embedding-3-small", "text-embedding-ada-002", "gpt-4-turbo",
"gpt-4-turbo-2024-04-09", "gpt-4-0125-preview", "gpt-3.5-turbo",
"gpt-4-turbo-preview", "gpt-4", "davinci-002", "gpt-4o-mini",
"gpt-4o", "gpt40-0806-loco-vm"
]
#api_key = get_api_key("OPENAI_API_KEY", engine)
if not api_key or api_key == "1234":
print("Warning: Invalid OpenAI API key. Using fallback model list.")
return fallback_models
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
api_url = "https://api.openai.com/v1/models"
try:
response = requests.get(api_url, headers=headers)
response.raise_for_status()
api_models = [model["id"] for model in response.json()["data"]]
print(f"Successfully fetched {len(api_models)} models from OpenAI API")
# Combine API models with fallback models, prioritizing API models
combined_models = list(set(api_models + fallback_models))
return combined_models
except Exception as e:
print(f"Failed to fetch models from OpenAI: {e}")
if isinstance(e, requests.exceptions.RequestException) and hasattr(e, "response"):
print(f"Response status code: {e.response.status_code}")
print(f"Response content: {e.response.text}")
print(f"Returning fallback list of {len(fallback_models)} OpenAI models")
return fallback_models
elif engine == "xai":
fallback_models = [
"grok-beta"
]
#api_key = get_api_key("XAI_API_KEY", engine)
if not api_key or api_key == "1234":
print("Warning: Invalid OpenAI API key. Using fallback model list.")
return fallback_models
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
api_url = "https://api.x.ai/v1/models"
try:
response = requests.get(api_url, headers=headers)
response.raise_for_status()
api_models = [model["id"] for model in response.json()["data"]]
print(f"Successfully fetched {len(api_models)} models from XAI API")
# Combine API models with fallback models, prioritizing API models
combined_models = list(set(api_models + fallback_models))
return combined_models
except Exception as e:
print(f"Failed to fetch models from XAI: {e}")
if isinstance(e, requests.exceptions.RequestException) and hasattr(e, "response"):
print(f"Response status code: {e.response.status_code}")
print(f"Response content: {e.response.text}")
print(f"Returning fallback list of {len(fallback_models)} XAI models")
return fallback_models
elif engine == "mistral":
fallback_models = [
"open-mistral-7b", "mistral-tiny", "mistral-tiny-2312",
"open-mistral-nemo", "open-mistral-nemo-2407", "mistral-tiny-2407",
"mistral-tiny-latest", "open-mixtral-8x7b", "mistral-small",
"mistral-small-2312", "open-mixtral-8x22b", "open-mixtral-8x22b-2404",
"mistral-small-2402", "mistral-small-latest", "mistral-medium-2312",
"mistral-medium", "mistral-medium-latest", "mistral-large-2402",
"mistral-large-2407", "mistral-large-latest", "codestral-2405",
"codestral-latest", "codestral-mamba-2407", "open-codestral-mamba",
"codestral-mamba-latest", "mistral-embed"
]
#api_key = get_api_key("MISTRAL_API_KEY", engine)
if not api_key or api_key == "1234":
print("Warning: Invalid Mistral API key. Using fallback model list.")
return fallback_models
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
api_url = "https://api.mistral.ai/v1/models"
try:
response = requests.get(api_url, headers=headers)
response.raise_for_status()
api_models = [model["id"] for model in response.json()["data"]]
print(f"Successfully fetched {len(api_models)} models from Mistral API")
# Combine API models with fallback models, prioritizing API models
combined_models = list(set(api_models + fallback_models))
return combined_models
except Exception as e:
print(f"Failed to fetch models from Mistral: {e}")
print(f"Returning fallback list of {len(fallback_models)} Mistral models")
return fallback_models
elif engine == "groq":
fallback_models = [
"llama-3.1-8b-instant",
"llava-v1.5-7b-4096-preview",
"gemma2-9b-it",
"whisper-large-v3",
"llama-3.1-70b-versatile",
"llama3-groq-70b-8192-tool-use-preview",
"llama3-groq-8b-8192-tool-use-preview",
"llama-guard-3-8b",
"llama3-70b-8192",
"distil-whisper-large-v3-en",
"mixtral-8x7b-32768",
"llama3-8b-8192",
]
#api_key = get_api_key("GROQ_API_KEY", engine)
if not api_key or api_key == "1234":
print("Warning: Invalid GROQ API key. Using fallback model list.")
return fallback_models
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
api_url = "https://api.groq.com/openai/v1/models"
try:
response = requests.get(api_url, headers=headers)
response.raise_for_status()
api_models = [model["id"] for model in response.json()["data"]]
print(f"Successfully fetched {len(api_models)} models from GROQ API")
# Combine API models with fallback models, prioritizing API models
combined_models = list(set(api_models + fallback_models))
return combined_models
except Exception as e:
print(f"Failed to fetch models from GROQ: {e}")
print(f"Returning fallback list of {len(fallback_models)} GROQ models")
return fallback_models
elif engine == "anthropic":
return [
"claude-3-5-opus-latest",