forked from udacity/pdsnd_github
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbikeshare_2.py
139 lines (80 loc) · 3.25 KB
/
bikeshare_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import time
import pandas as pd
import numpy as np
CITY_DATA = { 'chicago': 'chicago.csv',
'new york city': 'new_york_city.csv',
'washington': 'washington.csv' }
SEPARATOR = '-' * 40
def get_filters():
"""
Asks user to specify a city, month, and day to analyze.
Returns:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
"""
print('Hello! Let\'s explore some US bikeshare data!')
# get user input for city (chicago, new york city, washington). HINT: Use a while loop to handle invalid inputs
# get user input for month (all, january, february, ... , june)
# get user input for day of week (all, monday, tuesday, ... sunday)
print(SEPARATOR)
return city, month, day
def load_data(city, month, day):
"""
Loads data for the specified city and filters by month and day if applicable.
Args:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
Returns:
df - Pandas DataFrame containing city data filtered by month and day
"""
return df
def time_stats(df):
"""Displays statistics on the most frequent times of travel."""
print('\nCalculating The Most Frequent Times of Travel...\n')
start_time = time.time()
# display the most common month
# display the most common day of week
# display the most common start hour
print("\nThis took %s seconds." % (time.time() - start_time))
print(SEPARATOR)
def station_stats(df):
"""Displays statistics on the most popular stations and trip."""
print('\nCalculating The Most Popular Stations and Trip...\n')
start_time = time.time()
# display most commonly used start station
# display most commonly used end station
# display most frequent combination of start station and end station trip
print(f"\nThis took {time.time() - start_time} seconds.")
print(SEPARATOR)
def trip_duration_stats(df):
"""Displays statistics on the total and average trip duration."""
print('\nCalculating Trip Duration...\n')
start_time = time.time()
# display total travel time
# display mean travel time
print(f"\nThis took {time.time() - start_time} seconds.")
print(SEPARATOR)
def user_stats(df):
"""Displays statistics on bikeshare users."""
print('\nCalculating User Stats...\n')
start_time = time.time()
# Display counts of user types
# Display counts of gender
# Display earliest, most recent, and most common year of birth
print(f"\nThis took {time.time() - start_time} seconds.")
print(SEPARATOR)
def main():
while True:
city, month, day = get_filters()
df = load_data(city, month, day)
time_stats(df)
station_stats(df)
trip_duration_stats(df)
user_stats(df)
restart = input('\nWould you like to restart? Enter yes or no.\n')
if restart.lower() != 'yes':
break
if __name__ == "__main__":
main()