-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmodel.py
102 lines (82 loc) · 3.93 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import torch
import torch.nn as nn
import torch.nn.functional as F
from numpy.random import RandomState
class DRRAveStateRepresentation(nn.Module):
def __init__(self, n_items=5, item_features=100, user_features=100):
super(DRRAveStateRepresentation, self).__init__()
self.n_items = n_items
self.random_state = RandomState(1)
self.item_features = item_features
self.user_features = user_features
self.attention_weights = nn.Parameter(torch.from_numpy(0.1 * self.random_state.rand(self.n_items)).float())
def forward(self, user, items):
'''
DRR-AVE State Representation
:param items: (torch tensor) shape = (n_items x item_features),
Matrix of items in history buffer
:param user: (torch tensor) shape = (1 x user_features),
User embedding
:return: output: (torch tensor) shape = (3 * item_features)
'''
right = items.t() @ self.attention_weights
middle = user * right
output = torch.cat((user, middle, right), 0).flatten()
return output
class Actor(nn.Module):
def __init__(self, in_features=100, out_features=18):
super(Actor, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.linear1 = nn.Linear(self.in_features, self.in_features)
self.linear2 = nn.Linear(self.in_features, self.in_features)
self.linear3 = nn.Linear(self.in_features, self.out_features)
def forward(self, state):
output = F.relu(self.linear1(state))
output = F.relu(self.linear2(output))
output = F.tanh(self.linear3(output))
return output
class Critic(nn.Module):
def __init__(self, action_size=20, in_features=128, out_features=18):
super(Critic, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.combo_features = in_features + action_size
self.action_size = action_size
self.linear1 = nn.Linear(self.in_features, self.in_features)
self.linear2 = nn.Linear(self.combo_features, self.combo_features)
self.linear3 = nn.Linear(self.combo_features, self.combo_features)
self.output_layer = nn.Linear(self.combo_features, self.out_features)
def forward(self, state, action):
output = F.relu(self.linear1(state))
output = torch.cat((action, output), dim=1)
output = F.relu(self.linear2(output))
output = F.relu(self.linear3(output))
output = self.output_layer(output)
return output
class PMF(nn.Module):
def __init__(self, n_users, n_items, n_factors=20, is_sparse=False, no_cuda=None):
super(PMF, self).__init__()
self.n_users = n_users
self.n_items = n_items
self.n_factors = n_factors
self.no_cuda = no_cuda
self.random_state = RandomState(1)
self.user_embeddings = nn.Embedding(n_users, n_factors, sparse=is_sparse)
self.user_embeddings.weight.data = torch.from_numpy(0.1 * self.random_state.rand(n_users, n_factors)).float()
self.item_embeddings = nn.Embedding(n_items, n_factors, sparse=is_sparse)
self.item_embeddings.weight.data = torch.from_numpy(0.1 * self.random_state.rand(n_items, n_factors)).float()
self.ub = nn.Embedding(n_users, 1)
self.ib = nn.Embedding(n_items, 1)
self.ub.weight.data.uniform_(-.01, .01)
self.ib.weight.data.uniform_(-.01, .01)
def forward(self, users_index, items_index):
user_h1 = self.user_embeddings(users_index)
item_h1 = self.item_embeddings(items_index)
R_h = (user_h1 * item_h1).sum(dim=1 if len(user_h1.shape) > 1 else 0) + self.ub(users_index).squeeze() + self.ib(items_index).squeeze()
return R_h
def __call__(self, *args):
return self.forward(*args)
def predict(self, users_index, items_index):
preds = self.forward(users_index, items_index)
return preds