-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathexample1.R
132 lines (111 loc) · 3.68 KB
/
example1.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
##
## Example 1: Poisson regression
##
## Data
x <- c(3, 2, 4, 3, 3, 6, 4, 1, 6, 4,
5, 7, 4, 4, 1, 4, 0, 3, 8, 4)
## Histogram
h <- hist(x, right = FALSE,
breaks = seq(min(x), max(x) + 1, 1),
plot = FALSE)
barplot(h$counts, names.arg = h$breaks[-length(h$breaks)],
las = 1, xlab = "x", ylab = "count")
## Mean and variance
mean(x)
var(x)
## GLM
fit <- glm(x ~ 1, family = poisson(link = log))
summary(fit)
print(exp(coef(fit)))
## Load rjags library
library(rjags)
## Run JAGS
inits <- vector("list", 3)
inits[[1]] <- list(lambda = 1,
.RNG.seed = 1,
.RNG.name = "base::Mersenne-Twister")
model1 <- jags.model("example1_model.txt",
data = list(X = x, N = length(x)),
inits = inits[[1]], n.chains = 1, n.adapt = 0)
post1 <- coda.samples(model1, variable.names = "lambda",
n.iter = 50)
## Plot trace
#pdf("example1-1.pdf", width = 360/72, height = 240/72,
# family = "Helvetica", pointsize = 10)
traceplot(post1, col = 1, las = 1)
#dev.off()
inits[[2]] <- list(lambda = 30,
.RNG.seed = 2,
.RNG.name = "base::Mersenne-Twister")
inits[[3]] <- list(lambda = 100,
.RNG.seed = 3,
.RNG.name = "base::Mersenne-Twister")
model2 <- jags.model("example1_model.txt",
data = list(X = x, N = length(x)),
inits = inits, n.chains = 3, n.adapt = 0)
post2 <- coda.samples(model2, variable.names = "lambda",
n.iter = 50)
## Plot trace
#pdf("example1-2.pdf", width = 360/72, height = 240/72,
# family = "Helvetica", pointsize = 10)
traceplot(post2, las = 1, col = c(1, 2, 4))
#dev.off()
## Adjust burnin, mcmc and tune parameters
burnin <- 1000
iter <- 1000
thin <- 1
model3 <- jags.model("example1_model.txt",
data = list(X = x, N = length(x)),
inits = inits, n.chains = 3, n.adapt = 500)
update(model3, n.iter = burnin - 500)
post3 <- coda.samples(model3,
variable.names = "lambda",
n.iter = iter, thin = thin)
#pdf("example1-3.pdf", width = 360/72, height = 240/72,
# family = "Helvetica", pointsize = 10)
plot(post3)
#dev.off()
## Summary
summary(post3)
## Convergence diagnostic
# Gelman & Rubin
gelman.diag(post3)
## Informatvie prior
inits <- list(list(lambda = 0.1,
.RNG.seed = 1,
.RNG.name = "base::Mersenne-Twister"),
list(lambda = 1,
.RNG.seed = 2,
.RNG.name = "base::Mersenne-Twister"),
list(lambda = 10,
.RNG.seed = 3,
.RNG.name = "base::Mersenne-Twister"))
model4 <- jags.model("example1-1_model.txt",
data = list(X = x, N = length(x)),
inits = inits, n.chains = 3)
update(model4, n.iter = burnin)
post4 <- coda.samples(model4,
variable.names = "lambda",
n.iter = iter, thin = thin)
summary(post4)
## Plot prior, posterior and likelihood
#pdf("example1-4.pdf", width = 480/72, height = 480/72,
# family = "Helvetica", pointsize = 10)
par(mfrow = c(2, 1))
# Prior
curve(dgamma(x, shape = 2, rate = 2), from = 0, to = 5,
lty = 2, las = 1,
xlim = c(0, 5), ylim = c(0, 1.2),
xlab = "lambda", ylab = "density")
# Posterior
lines(density(sapply(1:3, function(i) post4[[i]])))
# Likelihood
ll <- function(x, x0) {
sapply(x, function(lambda) prod(dpois(x0, lambda)))
}
x0 <- x # Preserve x as x0
curve(ll(x, x0 = x0), from = 0, to = 5,
type = "l", las = 1,
xlab = "lambda", ylab = "likelihood")
#dev.off()
par(mfrow = c(1, 1))