-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainval_continual.py
142 lines (115 loc) · 5.13 KB
/
trainval_continual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import sys
import os
import json
from copy import deepcopy
import importlib
import numpy as np
import torch
import torch.nn as nn
from core.utils import convert_standardconv_to_condconv, find_task_dir_by_idx
from core.utils import load_checkpoint, save_checkpoint, build_backbone_info
from core.utils import build_optimizers, build_schedulers, build_imagedataloaders
from algorithms import train_epoch, test_epoch
from algorithms import ModelCheckpoint
def run_trainval(model, manager, task_idx, dataset, max_epoch, device, checkpoint_dir,
train_loader, val_loader, optimizers, schedulers, save_opt):
title_str = '== TRAINVAL FINETUNE Task {} on {} =='.format(task_idx, dataset)
bound_str = '=' * len(title_str)
print(bound_str + '\n' + title_str + '\n' + bound_str)
print('Checkpoint Directory: {}'.format(checkpoint_dir))
output_dir, inner_chkpt = os.path.split(checkpoint_dir)
manager.save_task_exclusive_params(model.module, task_idx)
manager.save_task_dataset(task_idx, dataset)
model_checkpoint = ModelCheckpoint(task_idx, checkpoint_dir, save_opt, max_epoch)
for epoch_idx in range(1, max_epoch+1):
train_loss, train_acc = train_epoch(
model, device, train_loader, optimizers, epoch_idx)
val_loss, val_acc = test_epoch(
model, device, val_loader, epoch_idx)
model_checkpoint(val_acc, epoch_idx, model, manager=manager)
schedulers.step()
return
def main(*args, **kwargs):
# ---------------------------------
# Loading the config
# ---------------------------------
config_module = importlib.import_module('configs.'+sys.argv[1])
args = config_module.args
print(args)
# ---------------------------------
# General settings
# ---------------------------------
device = 'cuda'
torch.manual_seed(args.rng_seed)
torch.cuda.manual_seed(args.rng_seed)
torch.cuda.manual_seed_all(args.rng_seed)
np.random.seed(args.rng_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
assert(args.save_opt in ['best', 'last'])
# ---------------------------------
# Dataset settings
# ---------------------------------
image_size = args.image_size
batch_size = args.batch_size
padding = args.padding
transform_name = args.transform_name
# ---------------------------------
# Optimizer and Scheduler settings
# ---------------------------------
param_types = args.param_types
max_epoch = args.max_epoch
optimizer_infos = args.optimizer_infos
scheduler_infos = args.scheduler_infos
# ---------------------------------
# Backbone settings
# ---------------------------------
backbone_info = build_backbone_info(args.backbone, 'cond', image_size)
# ---------------------------------
# Method settings
# ---------------------------------
experiment_dir = 'CHECKPOINTS/Continual/{}/{}'.format(
args.exp_name, args.backbone)
if args.task_idx == 1:
# Convert the scratch model with standard conv to cond conv
source_chkpt_dir = 'CHECKPOINTS/Individual/{}/{}/{}/baseline'.format(
args.exp_name, args.backbone, args.dataset)
target_chkpt_dir = os.path.join(
experiment_dir, 'Task{}_{}'.format(args.task_idx, args.dataset), 'finetune')
convert_standardconv_to_condconv(
source_chkpt_dir, target_chkpt_dir, args.task_idx, args.dataset)
return # No need training after conversion
else:
# Load the model from the previous task
prev_task_dir = find_task_dir_by_idx(experiment_dir, args.task_idx - 1)
prev_chkpt_dir = os.path.join(experiment_dir, prev_task_dir, 'finetune')
model, manager = load_checkpoint(prev_chkpt_dir)
manager.rebuild_structure_with_expansion(
model, args.task_idx, num_classes=args.num_classes,
zero_init_expand=args.zero_init_expand)
# ---------------------------------
# Build the parallel model
# ---------------------------------
model = nn.DataParallel(model.to(device))
# ---------------------------------
# Run trainval or evaluate
# ---------------------------------
# Build the train and validation dataloaders
train_loader, val_loader = build_imagedataloaders(
'trainval', os.path.join(args.exp_name, args.dataset), transform_name,
image_size, batch_size, padding, args.save_opt, args.workers)
# Get the checkpoint directory name
checkpoint_dir = os.path.join(
experiment_dir, 'Task{}_{}'.format(args.task_idx, args.dataset), 'finetune')
# Get the optimizers and schedulers
optimizers = build_optimizers(
model.module, param_types, optimizer_infos, manager=manager, task_idx=args.task_idx)
schedulers = build_schedulers(
optimizers, scheduler_infos)
# Run the training validation
run_trainval(
model, manager, args.task_idx, args.dataset, max_epoch, device, checkpoint_dir,
train_loader, val_loader, optimizers, schedulers, args.save_opt)
return
if __name__ == '__main__':
main()