-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
95 lines (76 loc) · 4.25 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# Copyright 2017 The BEGAN-tensorflow Authors(Taehoon Kim). All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# MIT License
#
# Modifications copyright (c) 2018 Image & Vision Computing Lab, Institute of Information Science, Academia Sinica
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ==============================================================================
import numpy as np
import tensorflow as tf
slim = tf.contrib.slim
def Glo_Generator(x,condition,batch_size,z_dim,reuse):
x_dim = z_dim
condition_dim = 1
with tf.variable_scope('G1',reuse=reuse) as g1:
weights_g1 = {
"w1_g1" : tf.get_variable("w1_g1",[x_dim + condition_dim , 4*4*1024]), #4*4*1024
"w2_g1" : tf.get_variable("w2_g1",[5, 5, 512, 1024]), #8*8*512
"w3_g1" : tf.get_variable("w3_g1",[5, 5, 256, 512]), #16*16*256
"w4_g1" : tf.get_variable("w4_g1",[5, 5, 128, 256]), #32*32*128
"w5_g1" : tf.get_variable("w5_g1",[5, 5, 3, 128]), #64*64*3
}
biases_g1 = {
"b1_g1" : tf.get_variable("b1_g1", [4*4*1024]),
"b2_g1" : tf.get_variable("b2_g1", [512]),
"b3_g1" : tf.get_variable("b3_g1", [256]),
"b4_g1" : tf.get_variable("b4_g1", [128]),
"b5_g1" : tf.get_variable("b5_g1", [3]),
}
g1_out1 = tf.add(tf.matmul(tf.concat([x,condition],1), weights_g1["w1_g1"]), biases_g1["b1_g1"]) #(16,8*8*512)
g1_out1 = tf.reshape(g1_out1,[batch_size,4,4,1024])
output_shape_g2 = tf.stack([batch_size, 8, 8, 512])
g1_out2 = tf.nn.relu(slim.batch_norm(tf.add(deconv2d(g1_out1, weights_g1["w2_g1"], output_shape_g2), biases_g1["b2_g1"])))
output_shape_g3 = tf.stack([batch_size, 16, 16, 256])
g1_out3 = tf.nn.relu(slim.batch_norm(tf.add(deconv2d(g1_out2, weights_g1["w3_g1"], output_shape_g3), biases_g1["b3_g1"])))
output_shape_g4 = tf.stack([batch_size, 32, 32, 128])
g1_out4 = tf.nn.relu(slim.batch_norm(tf.add(deconv2d(g1_out3, weights_g1["w4_g1"], output_shape_g4), biases_g1["b4_g1"])))
output_shape_g5 = tf.stack([batch_size, 64, 64, 3])
g1_out5 = tf.nn.tanh(tf.add(deconv2d(g1_out4, weights_g1["w5_g1"], output_shape_g5), biases_g1["b5_g1"]))
g1_out5 = tf.transpose(g1_out5,[0,3,1,2])
variables_g1 = tf.contrib.framework.get_trainable_variables(g1)
return g1_out5,variables_g1
def deconv2d(x, W, output_shape):
return tf.nn.conv2d_transpose(x, W, output_shape, strides = [1, 2, 2, 1], padding = 'SAME')
def nchw_to_nhwc(x):
return tf.transpose(x, [0, 2, 3, 1])
def nhwc_to_nchw(x):
return tf.transpose(x, [0, 3, 1, 2])