-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
269 lines (226 loc) · 9.14 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
""" Rude Carnie: Age and Gender Deep Learning with Tensorflow found at
https://github.com/dpressel/rude-carnie
"""
# ==============================================================================
# MIT License
#
# Modifications copyright (c) 2018 Image & Vision Computing Lab, Institute of Information Science, Academia Sinica
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ==============================================================================
#!/usr/bin/env python
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import six.moves
from datetime import datetime
import sys
import math
import time
from data import multiinputs, inputs_mod, standardize_image
import numpy as np
import tensorflow as tf
import cv2
import re
RESIZE_AOI = 256
RESIZE_FINAL = 227
def EyeLocAlignFace(faceimage, righteyex, righteyey, lefteyex, lefteyey):
deltay = math.fabs(righteyey-lefteyey)
deltax = math.fabs(righteyex-lefteyex)
degrees = float((math.atan2(deltay,deltax)*180)/math.pi)
if (lefteyey > righteyey):
faceimage = imutils.rotate(faceimage, degrees)
else:
faceimage = imutils.rotate(faceimage, -degrees)
return faceimage
def MTCNNDetectFace(image):
print ("Initialize Networks ... ")
g1 = tf.Graph()
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.2)
with g1.as_default():
sess_mtcnn = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
with sess_mtcnn.as_default():
pnet, rnet, onet = align.detect_face.create_mtcnn(sess_mtcnn, None)
# minimum size of face
minsize = 60
# mtcnn three step's threshold
threshold = [0.6,0.7,0.7]
# scale factor
factor = 0.709
margin = 0
faceimagesequence = []
faceimagelocation = []
faceimagelandmarks = []
bounding_boxes, points = align.detect_face.detect_face(image,minsize,pnet,rnet,onet,threshold,factor)
numberoffaces = bounding_boxes.shape[0]
img_size = np.asarray(image.shape)[0:2]
if numberoffaces > 0:
det = bounding_boxes[:,0:4]
probs = bounding_boxes[:,4]
# right eye, left eye, nose, right corner, left corner
landmarks = points[0:10,:]
for index in xrange(numberoffaces):
x1 = np.maximum(det[index, 0]-margin/2, 0).astype(np.int32)
y1 = np.maximum(det[index, 1]-margin/2, 0).astype(np.int32)
x2 = np.minimum(det[index, 2]+margin/2, img_size[1]).astype(np.int32)
y2 = np.minimum(det[index, 3]+margin/2, img_size[0]).astype(np.int32)
# face image
faceimage = image[y1:y2, x1:x2]
faceimage = EyeLocAlignFace(faceimage,landmarks[0, index],landmarks[5, index],landmarks[1, index],landmarks[6, index])
faceimagesequence.append(faceimage.copy())
# face location
location = [x1,y1,x2,y2]
faceimagelocation.append(location)
# face landmarks
# right eye
rex = int(landmarks[0, index])
rey = int(landmarks[5, index])
# left eye
lex = int(landmarks[1, index])
ley = int(landmarks[6, index])
# nose
nx = int(landmarks[2, index])
ny = int(landmarks[7, index])
# right corner
rcx = int(landmarks[3, index])
rcy = int(landmarks[8, index])
# left corner
lcx = int(landmarks[4, index])
lcy = int(landmarks[9, index])
location = [rex,rey,lex,ley,nx,ny,rcx,rcy,lcx,lcy]
faceimagelandmarks.append(location)
return faceimagesequence, faceimagelocation, faceimagelandmarks, numberoffaces
# Read image files
class ImageCoder(object):
def __init__(self):
# Create a single Session to run all image coding calls.
config = tf.ConfigProto(allow_soft_placement=True)
self._sess = tf.Session(config=config)
# Initializes function that converts PNG to JPEG data.
self._png_data = tf.placeholder(dtype=tf.string)
image = tf.image.decode_png(self._png_data, channels=3)
self._png_to_jpeg = tf.image.encode_jpeg(image, format='rgb', quality=100)
# Initializes function that decodes RGB JPEG data.
self._decode_jpeg_data = tf.placeholder(dtype=tf.string)
self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3)
self.crop = tf.image.resize_images(self._decode_jpeg, (RESIZE_AOI, RESIZE_AOI))
def png_to_jpeg(self, image_data):
return self._sess.run(self._png_to_jpeg,
feed_dict={self._png_data: image_data})
def decode_jpeg(self, image_data):
image = self._sess.run(self.crop, #self._decode_jpeg,
feed_dict={self._decode_jpeg_data: image_data})
assert len(image.shape) == 3
assert image.shape[2] == 3
return image
# Modifed from here
# http://stackoverflow.com/questions/3160699/python-progress-bar#3160819
class ProgressBar(object):
DEFAULT = 'Progress: %(bar)s %(percent)3d%%'
FULL = '%(bar)s %(current)d/%(total)d (%(percent)3d%%) %(remaining)d to go'
def __init__(self, total, width=40, fmt=DEFAULT, symbol='='):
assert len(symbol) == 1
self.total = total
self.width = width
self.symbol = symbol
self.fmt = re.sub(r'(?P<name>%\(.+?\))d',
r'\g<name>%dd' % len(str(total)), fmt)
self.current = 0
def update(self, step=1):
self.current += step
percent = self.current / float(self.total)
size = int(self.width * percent)
remaining = self.total - self.current
bar = '[' + self.symbol * size + ' ' * (self.width - size) + ']'
args = {
'total': self.total,
'bar': bar,
'current': self.current,
'percent': percent * 100,
'remaining': remaining
}
six.print_('\r' + self.fmt % args, end='')
def done(self):
self.current = self.total
self.update(step=0)
print('')
def _is_png(filename):
"""Determine if a file contains a PNG format image.
Args:
filename: string, path of the image file.
Returns:
boolean indicating if the image is a PNG.
"""
return '.png' in filename
def make_multi_image_batch(filenames, coder):
"""Process a multi-image batch, each with a single-look
Args:
filenames: list of paths
coder: instance of ImageCoder to provide TensorFlow image coding utils.
Returns:
image_buffer: string, JPEG encoding of RGB image.
"""
images = []
for filename in filenames:
with tf.gfile.FastGFile(filename, 'rb') as f:
image_data = f.read()
# Convert any PNG to JPEG's for consistency.
if _is_png(filename):
print('Converting PNG to JPEG for %s' % filename)
image_data = coder.png_to_jpeg(image_data)
image = coder.decode_jpeg(image_data)
crop = tf.image.resize_images(image, (RESIZE_FINAL, RESIZE_FINAL))
image = standardize_image(crop)
images.append(image)
image_batch = tf.stack(images)
return image_batch
def make_multi_crop_batch(filename, coder):
"""Process a single image file.
Args:
filename: string, path to an image file e.g., '/path/to/example.JPG'.
coder: instance of ImageCoder to provide TensorFlow image coding utils.
Returns:
image_buffer: string, JPEG encoding of RGB image.
"""
# Read the image file.
with tf.gfile.FastGFile(filename, 'rb') as f:
image_data = f.read()
# Convert any PNG to JPEG's for consistency.
if _is_png(filename):
print('Converting PNG to JPEG for %s' % filename)
image_data = coder.png_to_jpeg(image_data)
image = coder.decode_jpeg(image_data)
crops = []
print('Running multi-cropped image')
h = image.shape[0]
w = image.shape[1]
hl = h - RESIZE_FINAL
wl = w - RESIZE_FINAL
crop = tf.image.resize_images(image, (RESIZE_FINAL, RESIZE_FINAL))
crops.append(standardize_image(crop))
crops.append(tf.image.flip_left_right(crop))
corners = [ (0, 0), (0, wl), (hl, 0), (hl, wl), (int(hl/2), int(wl/2))]
for corner in corners:
ch, cw = corner
cropped = tf.image.crop_to_bounding_box(image, ch, cw, RESIZE_FINAL, RESIZE_FINAL)
crops.append(standardize_image(cropped))
flipped = tf.image.flip_left_right(cropped)
crops.append(standardize_image(flipped))
image_batch = tf.stack(crops)
return image_batch