This document is an early recipe for building and running TensorFlow with LIBXSMM. The amount of covered code paths as well as the performance of these code paths will be improved as the integration progresses. This means that executing TensorFlow for any real workload (or benchmark) beside of the cases shown below may not use LIBXSMM at all (same is/remains true for any system without Intel AVX2 instruction set extension). Relying on the master revision of TensorFlow is perfectly fine since the integration work is merged on a frequent basis. However, to capture the latest revision of the integration one may rely on:
git clone https://github.com/benoitsteiner/tensorflow-xsmm.git
wget https://github.com/hfp/libxsmm/archive/master.zip
sha256sum libxsmm-master.zip
To try LIBXSMM's master revision, the file tensorflow/workspace.bzl
can be adjusted by using the SHA256 sum from above:
native.new_http_archive(
name = "libxsmm_archive",
urls = [
"https://github.com/hfp/libxsmm/archive/master.zip",
],
sha256 = "<sha256sum libxsmm-master.zip>",
strip_prefix = "libxsmm-master",
build_file = str(Label("//third_party:libxsmm.BUILD")),
)
Beside of the regular prerequisites, nothing else is needed to use TensorFlow with LIBXSMM. Prior to Bazel 0.4.5, it was helpful to change TensorFlow's configure
script by replacing bazel clean --expunge
with bazel clean --expunge_async
(at least when NFS-hosted).
cd /path/to/tensorflow-xsmm
./configure
When behind a HTTP-proxy, the environment variables should carry https://
or http://
:
export https_proxy=https://proxy.domain.com:912
export http_proxy=http://proxy.domain.com:911
Please note that certain content under tensorflow/models
may cause an error during the configuration. In such a case, simply configure with "models" temporarily not present. In general, if the build step of any of the Bazel commands goes wrong, -s --verbose_failures
can be added to the command line (-s
shows the full command of each of the build steps). The flags --define tensorflow_xsmm=1
, --define eigen_xsmm=1
, and --define tensorflow_xsmm_backward=1
are not actually needed for all the cases, but are supplied for consistency.
More important, one line of below target flags should be added to Bazel's build line:
- AVX2/HSW/BDW:
--copt=-mfma --copt=-mavx2
- AVX-512/SKX:
--copt=-mfma --copt=-mavx512f --copt=-mavx512cd --copt=-mavx512bw --copt=-mavx512vl
(and--copt=-mavx512dq
depending on certain fixes being already present in TensorFlow) - AVX-512/KNL:
--copt=-mfma --copt=-mavx512f --copt=-mavx512cd --copt=-mavx512pf --copt=-mavx512er
NOTE: TensorFlow may run into issues, and one may temporarily apply --copt=-mfma --copt=-mavx2
(even if Intel AVX-512 extensions are available). There are at least two issues: (1) there can be NaNs e.g., printed when training a network regardless of the GCC-version, or (2) TensorFlow without LIBXSMM may crash in TF's implementation of GEMM.
For AVX-512 in general, GCC 5.x (or higher) should be used (see section Non-default Compiler). LIBXSMM supports Intel AVX2 as the baseline code path for all JIT-generated DNN-code (SMM domain also supports AVX). For Intel AVX-512 (on top of AVX2), the foundational instructions are sufficient in many cases, but for the sparse domain the Core-flavor is a prerequisite ("Skylake server" or SKX), and VNNI/QFMA instructions are honored on Intel Xeon Phi code-named "Knights Mill" (KNM).
Generally, please follow the guide to build TensorFlow from the sources. Please invoke the following commands to build the pip-package (Python wheel):
bazel build -c opt --copt=-O3 --copt=-fopenmp-simd --copt=-DLIBXSMM_OPENMP_SIMD --linkopt=-pthread \
--define tensorflow_xsmm=1 --define eigen_xsmm=1 --define tensorflow_xsmm_backward=1 \
<line-of-target-flags-from-above> \
//tensorflow/tools/pip_package:build_pip_package
bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg
The new Python TensorFlow wheel can be installed by the following command (use sudo -H
in front to elevate your permissions, or add --user
to install locally for the current user rather than in a system-wide fashion):
pip install \
--proxy proxy.domain.com:912 \
-I /tmp/tensorflow_pkg/<package-name-build-above.whl>
This document is an early recipe for building and running TensorFlow with LIBXSMM. Please do not expect any performance advantage (at this point) when comparing to TensorFlow without LIBXSMM!
The section helps to quickly setup benchmarks for Alexnet, Overfeat, VGG, and Googlenet v1. To setup a more complete set of models, please have a look at the next subsection.
git clone https://github.com/soumith/convnet-benchmarks.git
cd /path/to/tensorflow-xsmm
mkdir -p tensorflow/models
ln -s /path/to/convnet-benchmarks/tensorflow tensorflow/models/convnetbenchmarks
bazel build -c opt --copt=-O3 --copt=-fopenmp-simd --copt=-DLIBXSMM_OPENMP_SIMD --linkopt=-pthread \
--define tensorflow_xsmm=1 --define eigen_xsmm=1 --define tensorflow_xsmm_backward=1 \
<line-of-target-flags-from-above> \
//tensorflow/models/convnetbenchmarks:benchmark_alexnet \
//tensorflow/models/convnetbenchmarks:benchmark_overfeat \
//tensorflow/models/convnetbenchmarks:benchmark_vgg \
//tensorflow/models/convnetbenchmarks:benchmark_googlenet
The above command may be combined to build //tensorflow/tools/pip_package:build_pip_package
as well. When completed (wheel installed!) e.g., run the "Alexnet" benchmark:
LIBXSMM_VERBOSE=2 \
bazel-bin/tensorflow/models/convnetbenchmarks/benchmark_alexnet \
--data_format=NHWC --forward_only=true --batch_size=256 2>&1 \
| tee output_alexnet.log
In case of an ImportError: No module named builtins
one can resolve the problem with sudo -H pip install future --upgrade
.
LIBXSMM does not impose to build for a specific code path, and always exploits the most suitable instruction set extension for JIT-enabled code paths. However, LIBXSMM may also use non-JIT code paths which are CPUID-dispatched when the static code path has lower capabilities. This only works when using GCC 4.9 (or later) or the Intel Compiler. If TensorFlow does not match the highest possible CPU target (march=native), a performance penalty is possible.
It is recommended to rely on a pre-built compiler by using for instance the "devtools" package (RedHat) or similar (depends on the Linux distribution). To use a custom-built compiler with TensorFlow may not only ask to source this compiler:
export LD_LIBRARY_PATH=/software/gnu/gcc-6.3.0/lib64:/software/gnu/gcc-6.3.0/lib:${LD_LIBRARY_PATH}
export PATH=/software/gnu/gcc-6.3.0/bin:${PATH}
but to further advertise the different compiler-runtime to the linker (ld
).
echo "/software/gnu/gcc-6.3.0/lib64" > software-gnu-gcc630.conf
sudo mv software-gnu-gcc630.conf /etc/ld.so.conf.d/
sudo ldconfig
If there are still problems when using the custom compiler (mismatched GLIBC version), the symbolic link libstdc++.so.6
(under /usr/lib64
) may be adjusted to point to the latest update of the same major GLIBC version.
To gain insight into performance bottlenecks, one might source the Intel VTune Amplifier and run:
amplxe-cl -r result -data-limit 0 \
-collect advanced-hotspots -knob collection-detail=stack-sampling -- \
bazel-bin/tensorflow/models/convnetbenchmarks/benchmark_alexnet \
--data_format=NHWC --forward_only=true --batch_size=64 --num_batches=50
To get named JIT-kernels, one may add the following flags to Bazel's build line:
--copt=-DLIBXSMM_VTUNE=2 --linkopt=${VTUNE_AMPLIFIER_XE_2017_DIR}/lib64/libjitprofiling.a
There are two aspects of LIBXSMM enabled within TensorFlow: (1) sparse CNN, and (2) CNN. To build and test the sparse routines:
bazel build -c opt --copt=-O3 --copt=-fopenmp-simd --copt=-DLIBXSMM_OPENMP_SIMD --linkopt=-pthread \
--define tensorflow_xsmm=1 --define eigen_xsmm=1 --define tensorflow_xsmm_backward=1 \
<line-of-target-flags-from-above> \
//tensorflow/core/kernels:sparse_matmul_op_test
bazel-bin/tensorflow/core/kernels/sparse_matmul_op_test --benchmarks=all
bazel-bin/tensorflow/core/kernels/sparse_matmul_op_test
bazel run -c opt --copt=-O3 --copt=-fopenmp-simd --copt=-DLIBXSMM_OPENMP_SIMD --linkopt=-pthread \
--define tensorflow_xsmm=1 --define eigen_xsmm=1 --define tensorflow_xsmm_backward=1 \
<line-of-target-flags-from-above> \
//tensorflow/python/kernel_tests:sparse_matmul_op_test
To build and test the regular CNN routines (note that below bazel run...
may be deadlocking during the test):
bazel build -c opt --copt=-O3 --copt=-fopenmp-simd --copt=-DLIBXSMM_OPENMP_SIMD --linkopt=-pthread \
--define tensorflow_xsmm=1 --define eigen_xsmm=1 --define tensorflow_xsmm_backward=1 \
<line-of-target-flags-from-above> \
//tensorflow/core/kernels:conv_ops_test
bazel-bin/tensorflow/core/kernels/conv_ops_test
bazel run -c opt --copt=-O3 --copt=-fopenmp-simd --copt=-DLIBXSMM_OPENMP_SIMD --linkopt=-pthread \
--define tensorflow_xsmm=1 --define eigen_xsmm=1 --define tensorflow_xsmm_backward=1 \
<line-of-target-flags-from-above> \
//tensorflow/python/kernel_tests:conv_ops_test
Please follow the instructions at the following link to download and preprocess the Inception-v3 dataset: The relevant part of the instructions are duplicated below for convenience.
# location of where to place the ImageNet data
DATA_DIR=$HOME/imagenet-data
# build the preprocessing script.
cd tensorflow-models/inception
bazel build //inception:download_and_preprocess_imagenet
# run it
bazel-bin/inception/download_and_preprocess_imagenet "${DATA_DIR}"
The final line of the output script should read something like this, note the number of images:
2016-02-17 14:30:17.287989: Finished writing all 1281167 images in data set.
Please download models/slim from this link. Please download the pretrained weights for Inception-v3 from here. Please setup the environment variables as follows:
export CHECKPOINT_FILE= location of downloaded inception-v3 pretrained weights
export DATASET_DIR=$DATA_DIR
Please modify the file eval_image_classifier.py in models/slim so that inter_op_parallelism_threads is set to 1 since TensorFlow/libxsmm does not support concurrent evaluations of subgraphs currently.
slim.evaluation.evaluate_once(
master=FLAGS.master,
checkpoint_path=checkpoint_path,
logdir=FLAGS.eval_dir,
num_evals=num_batches,
eval_op=list(names_to_updates.values()),
variables_to_restore=variables_to_restore,
session_config= tf.ConfigProto(inter_op_parallelism_threads=1))
Run inference on ImageNet as follows:
python eval_image_classifier.py \
--alsologtostderr \
--checkpoint_path=${CHECKPOINT_FILE} \
--dataset_dir=${DATASET_DIR} \
--dataset_name=imagenet \
--dataset_split_name=validation \
--model_name=inception_v3
Please verify recall and accuracy as follows:
2017-07-13 21:21:27.438050: I tensorflow/core/kernels/logging_ops.cc:79] eval/Recall_5[0.93945813]
2017-07-13 21:21:27.438104: I tensorflow/core/kernels/logging_ops.cc:79] eval/Accuracy[0.77981138]