Skip to content

Latest commit

 

History

History
executable file
·
120 lines (83 loc) · 7.95 KB

README.md

File metadata and controls

executable file
·
120 lines (83 loc) · 7.95 KB

Mutational antigenic profiling of SARS-CoV-2 RBD affinity-matured IGHV3-53 antibodies

DOI

Analysis of mutational antigenic profiling of barcoded codon variants of SARS-CoV-2 RBD.

These antibodies (CAB-A17, CAB-A49, and CAB-C19) were first described in this preprint by Sheward, et al. (2022).

Study and analysis by Allie Greaney, Jesse Bloom, and co-authors.

This study is a collaboration with Ben Murrell, Gunilla Karlsson Hedestam, and B. Martin Hällberg at the Karolinska Institute.

Summary of workflow and results

For a summary of the workflow and links to key results files, click here. Reading this summary is the best way to understand the analysis.

Running the analysis

The analysis consists of three components, all of which are contained in this repository:

  1. Instructions to build the computing environment.

  2. The required input data.

  3. The computer code and a Snakemake file to run it.

Configure .git to not track Jupyter notebook metadata

To simplify git tracking of Jupyter notebooks, we have added the filter described here to strip notebook metadata to .gitattributes and .gitconfig. The first time you check out this repo, run the following command to use this configuration (see here):

git config --local include.path ../.gitconfig

Then don't worry about it anymore.

Build the computing environment

First, set up the computing environment, which is partially done via conda. Ensure you have conda installed; if not install it via Miniconda as described here. The fully pinned environment is specified in environment.yml, and an unpinned version is in environment_unpinned.yml. If the environment already exists, you can activate it with:

conda activate SARS-CoV-2-RBD_MAP

If you need to build the environment, then first build it with:

conda env create -f environment.yml

Then activate it as above.

Input data

The input data are specified in ./data/; see the README in that subdirectory for more details.

Running the code

The analysis consists of Jupyter notebooks in the top-level directory along with some additional code in Snakefile. You can run the analysis by using Snakemake to run Snakefile, specifying the conda environment, as in:

snakemake --use-conda --conda-prefix /fh/fast/bloom_j/software/miniconda3/envs/SARS-CoV-2-RBD_MAP -R make_summary -j 1

However, you probably want to using a cluster to help with computationally intensive parts of the analysis. To run using the cluster configuration for the Fred Hutch server, simply run the bash script run_Hutch_cluster.bash, which executes Snakefile in a way that takes advantage of the Hutch server resources. You likely want to submit run_Hutch_cluster.bash itself to the cluster (since it takes a while to run) with:

sbatch -t 7-0 run_Hutch_cluster.bash

Configuring the analysis

The configuration for the analysis is specifed in config.yaml. This file defines key variables for the analysis, and should be relatively self-explanatory. You should modify the analysis by changing this configuration file; do not hard-code crucial experiment-specific variables within the notebooks or Snakefile.

In general:

Cluster configuration

There is a cluster configuration file cluster.yaml that configures Snakefile for the Fred Hutch cluster. The run_Hutch_cluster.bash script uses this configuration to run Snakefile. If you are using a different cluster than the Fred Hutch one, you wll need to modify the cluster configuration file.

Notebooks that perform the analysis

The Jupyter notebooks that perform most of the analysis are in this top-level directory with the extension *.ipynb. These notebooks read the key configuration values from config.yaml.

There is also a ./scripts/ subdirectory with related scripts.

The notebooks need to be run in the order described in the workflow and results summary. This will occur automatically if you run them via Snakefile as described above.

Results

Results are placed in the ./results/ subdirectory. Many of the files created in this subdirectory are not tracked in the git repo as they are very large. However, key results files are tracked as well as a summary that shows the code and results. Click here to see that summary.

The large results files are tracked via git-lfs. This requires git-lfs to be installed, which it is in the conda environment specified by environment.yml. The following commands were then run:

git lfs install

You may need to run this if you are tracking these files and haven't installed git-lfs in your user account. Then the large results files were added for tracking with:

git lfs track <FILENAME>

Updating the conda environment

environment.yml contains a fully pinned conda environment. An environment without all of the versions pinned is in environment_unpinned.yml. If you need to update the environment, the suggested way to do it is add the new requirement to environment_unpinned.yml, then build, activate, and export that environment. The last three commands can be done by the following commands (using mamba since it is faster):

mamba env create -f environment_unpinned.yml
conda activate SARS-CoV-2-RBD_MAP
conda env export > environment.yml

Creating "subset" repos and uploading data to the SRA

Currently this repo contains analyses of many antibodies and sera, and should remain public since collaborators do not want all of these data to be public.

For papers, you can make a public "subset" repo by following the instructions in ./subset_data/. After making a subset repo, you can upload sequencing data to the Sequence Read Archive (SRA) following the instructions in ./SRA_upload/.