Skip to content

Latest commit

 

History

History
515 lines (431 loc) · 14.2 KB

call_strong_escape_sites.md

File metadata and controls

515 lines (431 loc) · 14.2 KB

Call sites of "strong escape"

This Python Jupyter notebook call sites of srong escape from each antibody / sera

Import Python modules:

import os

from dms_variants.constants import CBPALETTE

from IPython.display import display, HTML

import pandas as pd

from plotnine import *

import yaml

Versions of key software:

Read the configuration file:

with open('config.yaml') as f:
    config = yaml.safe_load(f)

Create output directory:

os.makedirs(config['escape_profiles_dir'], exist_ok=True)

Extract from configuration what we will use as the site- and mutation-level metrics:

site_metric = config['site_metric']
mut_metric = config['mut_metric']

print(f"At site level, quantifying selection by {site_metric}")
print(f"At mutation level, quantify selection by {mut_metric}")
At site level, quantifying selection by site_total_escape_frac_epistasis_model
At mutation level, quantify selection by mut_escape_frac_epistasis_model

Read the escape fractions. We only retain the average of the libraries for plotting here, not the individual libraries. Also, we work in the full-Spike rather than RBD numbering, which means we use label_site as site (and so rename as such below):

print(f"Reading escape fractions from {config['escape_fracs']}")
escape_fracs = (pd.read_csv(config['escape_fracs'])
                .query('library == "average"')
                .drop(columns=['site', 'selection', 'library'])
                .rename(columns={'label_site': 'site'})
                )
print('First few lines of escape-fraction data frame with sample-information added:')
display(HTML(escape_fracs.head().to_html(index=False)))
Reading escape fractions from results/escape_scores/escape_fracs.csv
First few lines of escape-fraction data frame with sample-information added:
condition site wildtype mutation protein_chain protein_site mut_escape_frac_epistasis_model mut_escape_frac_single_mut site_total_escape_frac_epistasis_model site_total_escape_frac_single_mut site_avg_escape_frac_epistasis_model site_avg_escape_frac_single_mut nlibs
CAB-A17_139 331 N A E 331 0.001006 0.000179 0.01628 0.003478 0.001017 0.000217 2
CAB-A17_139 331 N D E 331 0.001013 0.000167 0.01628 0.003478 0.001017 0.000217 1
CAB-A17_139 331 N E E 331 0.000979 0.000237 0.01628 0.003478 0.001017 0.000217 2
CAB-A17_139 331 N F E 331 0.001090 0.000095 0.01628 0.003478 0.001017 0.000217 2
CAB-A17_139 331 N G E 331 0.001025 0.000109 0.01628 0.003478 0.001017 0.000217 2

Now identify sites of "strong" selection using three criteria for each threshold.

  1. The selection at a site has to exceed the median selection across all sites for that condition (e.g., antibody or sera) by some threshold.

  2. The selection at a site has to be greater than some fraction of the maximum selection observed at any site for that condition (e.g., antibody or sera).

  3. The selection at a site has to exceed some absolute minimum.

site_threshold_df = pd.DataFrame()

for threshold, params in config['strong_escape_sites_calling_params'].items():
    print(f"\nCalling sites of strong escape for the {threshold} calling parameters:")
    
    exceed_median = params['exceed_median']
    frac_max = params['frac_max']
    min_value = params['min_value']

    print(f"Here are criteria used to call sites of strong escape for the {threshold} params:\n"
          f"  1. Selection at site exceeds median by >{exceed_median} fold\n"
          f"  2. Selection at site is >{frac_max} of the max for any site\n"
          f"  3. Selection at site is >{min_value}")
    
    if 'min_value_mut' in params:
        min_value_mut = params['min_value_mut']
        print(f"Sites are also called as significant if they have **any** mutation with escape fraction > {min_value_mut}")
    else:
        min_value_mut = None
    
    site_threshold_df = site_threshold_df.append(
        escape_fracs
        .assign(max_mut=lambda x: x.groupby(['condition', 'site'])[mut_metric].transform('max'))
        [['condition', 'site', site_metric, 'max_mut']]
        .drop_duplicates()
        .assign(
            threshold=threshold,
            median=lambda x: x.groupby('condition')[site_metric].transform('median'),
            max=lambda x: x.groupby('condition')[site_metric].transform('max'),
            exceed_median=lambda x: x['median'] * exceed_median,
            meet_exceed_median=lambda x: x[site_metric] > x['exceed_median'],
            frac_max=lambda x: x['max'] * frac_max,
            meet_frac_max=lambda x: x[site_metric] > x['frac_max'],
            min_value=lambda x: min_value,
            meet_min_value=lambda x: x[site_metric] > x['min_value'],
            meet_mut_min_value=lambda x: False if min_value_mut is None else x['max_mut'] > min_value_mut,
            strong_site=lambda x: (x['meet_exceed_median'] & x['meet_frac_max'] & x['meet_min_value']) | x['meet_mut_min_value'],
            n_strong_sites=lambda x: x.groupby('condition')['strong_site'].transform('sum'),
            )
        )
                    
# orders for plotting
site_threshold_df = (
        site_threshold_df
        .assign(condition=lambda x: pd.Categorical(x['condition'],
                                                   reversed(x['condition'].unique()),
                                                   ordered=True),
                )
        )
Calling sites of strong escape for the default calling parameters:
Here are criteria used to call sites of strong escape for the default params:
  1. Selection at site exceeds median by >10 fold
  2. Selection at site is >0.1 of the max for any site
  3. Selection at site is >0

Calling sites of strong escape for the sensitive calling parameters:
Here are criteria used to call sites of strong escape for the sensitive params:
  1. Selection at site exceeds median by >5 fold
  2. Selection at site is >0.05 of the max for any site
  3. Selection at site is >0

Calling sites of strong escape for the sensitive_max_mut calling parameters:
Here are criteria used to call sites of strong escape for the sensitive_max_mut params:
  1. Selection at site exceeds median by >5 fold
  2. Selection at site is >0.05 of the max for any site
  3. Selection at site is >0
Sites are also called as significant if they have **any** mutation with escape fraction > 0.5

Now plot the selection for all sites for all conditions, indicating which sites are strong escape and using lines to draw the three thresholds:

max_sel = site_threshold_df[site_metric].max()  # max y-value plotted

p = (ggplot(site_threshold_df.assign(alpha=lambda x: x['strong_site'].astype(int))) +
     aes(site_metric, 'condition', alpha='alpha', fill='strong_site') +
     geom_jitter(size=2.5, height=0.1, width=0, stroke=0, random_state=1) +
     scale_fill_manual(values=CBPALETTE) +
     scale_alpha(range=(0.15, 0.5), guide=None) +
     theme(figure_size=(4 * site_threshold_df['threshold'].nunique(),
                        0.25 * site_threshold_df['condition'].nunique()),
           legend_position='top',
           ) +
     xlab('site-level selection') +
     expand_limits(x=1.2 * max_sel) +
     geom_text(data=site_threshold_df[['condition', 'threshold', 'n_strong_sites']].drop_duplicates(),
               mapping=aes(y='condition', label='n_strong_sites'),
               inherit_aes=False,
               x=1.1 * max_sel,
               color=CBPALETTE[1],
               alpha=1,
               size=8,
               ha='left',
               va='center',
               ) +
     geom_linerange(data=site_threshold_df
                         .melt(id_vars=['condition', 'threshold'],
                               value_vars=['exceed_median', 'frac_max', 'min_value'],
                               var_name='threshold_type',
                               value_name='threshold_line')
                         .reset_index()
                         .drop_duplicates()
                         .assign(ymin=lambda x: x['condition'].cat.codes + 1 - 0.3,
                                 ymax=lambda x: x['condition'].cat.codes + 1 + 0.3),
                   mapping=aes(x='threshold_line', ymin='ymin', ymax='ymax', color='threshold_type'),
                   inherit_aes=False,
                   size=0.1) +
     scale_color_manual(values=CBPALETTE[2: ]) +
     facet_wrap('~ threshold', nrow=1)
     )

_ = p.draw()

png

Now get the strong sites for each condition, and write to a CSV file:

strong_sites = site_threshold_df.query('strong_site').reset_index(drop=True)

print('Number of sites of strong escape for each threshold:')
display(HTML(
    strong_sites
    .groupby('threshold')
    .aggregate(n_sites=pd.NamedAgg('site', 'nunique'))
    .to_html()
    ))

print(f"Writing to {config['strong_escape_sites']}, and printing the first few lines below:")
display(HTML(strong_sites.head().to_html()))

strong_sites.to_csv(config['strong_escape_sites'], index=False)
Number of sites of strong escape for each threshold:
n_sites
threshold
default 5
sensitive 5
sensitive_max_mut 5
Writing to results/escape_profiles/strong_escape_sites.csv, and printing the first few lines below:
condition site site_total_escape_frac_epistasis_model max_mut threshold median max exceed_median meet_exceed_median frac_max meet_frac_max min_value meet_min_value meet_mut_min_value strong_site n_strong_sites
0 CAB-A17_139 456 0.5772 0.5368 default 0.01313 0.5772 0.1313 True 0.05772 True 0 True False True 2
1 CAB-A17_139 475 0.4891 0.4616 default 0.01313 0.5772 0.1313 True 0.05772 True 0 True False True 2
2 CAB-A49_222 417 2.3510 0.9329 default 0.01927 2.8220 0.1927 True 0.28220 True 0 True False True 4
3 CAB-A49_222 420 1.8470 0.9687 default 0.01927 2.8220 0.1927 True 0.28220 True 0 True False True 4
4 CAB-A49_222 456 1.3500 0.9806 default 0.01927 2.8220 0.1927 True 0.28220 True 0 True False True 4

Plot which sites are auto-identified for each condition (e.g., antibody or sera):

p = (ggplot(strong_sites
            .assign(site=lambda x: pd.Categorical(x['site'],  # categorical so only plot observed sites
                                                  sorted(x['site'].unique()),
                                                  ordered=True)
                    )
            ) +
     aes('site', 'condition') +
     geom_tile() +
     theme(axis_text_x=element_text(angle=90),
           figure_size=(0.18 * strong_sites['site'].nunique(),
                        0.2 * strong_sites['condition'].nunique() * strong_sites['threshold'].nunique()),
           ) +
     facet_wrap('~ threshold', ncol=1)
     )

_ = p.draw()

png