-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgga_codon_muts_oligo_design.py
377 lines (341 loc) · 14.9 KB
/
gga_codon_muts_oligo_design.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
#!/usr/bin/env python3
"""Script to design oligos for Golden-Gate assembly codon mutagenesis."""
import argparse
import itertools
import math
import re
import sys
import Bio.SeqIO
import pandas as pd
MIN_PYTHON_VERSION = (3, 8)
if sys.version_info < MIN_PYTHON_VERSION:
raise RuntimeError(
f"Script requires Python >= {MIN_PYTHON_VERSION[0]}.{MIN_PYTHON_VERSION[1]}"
)
def remove_motif(oligo, motif, aa_to_codon):
"""Remove motif from oligo while keeping protein sequence."""
assert len(oligo) % 3 == 0
if motif not in oligo:
return oligo
prot = str(Bio.Seq.Seq(oligo).translate())
while motif in oligo:
i = oligo.index(motif)
for icodon in range(i // 3, i // 3 + 1 + len(motif) // 3):
aa = prot[icodon]
codon = oligo[icodon * 3: icodon * 3 + 3]
other_codons = [c for c in aa_to_codon[aa] if c != codon]
for other_codon in other_codons:
oligo = oligo[: icodon * 3] + other_codon + oligo[icodon * 3 + 3: ]
if oligo[i: i + len(motif)] != motif:
break
if oligo[i: i + len(motif)] != motif:
break
if oligo[i: i + len(motif)] == motif:
raise ValueError(f"Cannot remove {motif=} from {oligo=} at {i=}")
if (motif in oligo) and (oligo.index(motif) <= i):
raise ValueError(
f"Removing {motif=} at {i=} from {oligo=} created earlier motif"
)
assert motif not in oligo
assert prot == str(Bio.Seq.Seq(oligo).translate())
return oligo
def gga_codon_muts_oligo_design(
tiles_csv,
mutations_to_make_csv,
output_oligos_fasta,
max_representation,
wildtype_frac,
avoid_motifs,
codon_freqs_csv,
):
"""Function that implements the oligo design."""
print(f"\nReading tiles from {tiles_csv=}")
tiles = (
pd.read_csv(tiles_csv)
[["fragment", "fragment_sequence", "inframe_mutated_region"]]
.assign(
fragment_sequence=lambda x: x["fragment_sequence"].str.upper(),
inframe_mutated_region=lambda x: x["inframe_mutated_region"].str.upper(),
inframe_start=lambda x: x.apply(
lambda row: row["fragment_sequence"].find(row["inframe_mutated_region"]),
axis=1,
),
upstream_flank=lambda x: x.apply(
lambda row: row["fragment_sequence"][0: row["inframe_start"]],
axis=1,
),
downstream_flank=lambda x: x.apply(
lambda row: row["fragment_sequence"][
row["inframe_start"] + len(row["inframe_mutated_region"]):
],
axis=1,
),
)
)
assert len(tiles) == tiles["fragment"].nunique(), "tiles not uniquely named"
records = []
prot_from_tiles = []
sequential_start = 1
for tup in tiles.itertuples():
fragment_prot = str(Bio.Seq.Seq(tup.inframe_mutated_region).translate())
if len(tup.inframe_mutated_region) % 3 != 0:
raise ValueError(
f"'inframe_mutated_region' of fragment {tup.fragment} has length "
"that is not a multiple of 3:\n"
f"length: {len(tup.inframe_mutated_region)}\n"
f"inframe_mutated_region: {tup.inframe_mutated_region}"
)
if "*" in tup:
raise ValueError(
f"in-frame region of fragment {tup.fragment} encodes a stop codon"
)
if "-" in tup:
raise ValueError(
f"in-frame region of fragment {tup.fragment} encodes a gap"
)
prot_from_tiles.append(fragment_prot)
sequential_end = sequential_start + len(fragment_prot) - 1
records.append((tup.fragment, fragment_prot, sequential_start, sequential_end))
sequential_start = sequential_end + 1
prot_from_tiles = "".join(prot_from_tiles)
assert len(prot_from_tiles) == sequential_end, f"{len(prot_from_tiles)=}, {sequential_end=}"
print(f"Tiles encode protein of {len(prot_from_tiles)} residues:\n{prot_from_tiles}\n")
tiles = tiles.merge(
pd.DataFrame(
records,
columns=["fragment", "fragment_prot", "sequential_start", "sequential_end"]
),
on="fragment",
validate="one_to_one",
)
print(f"Reading mutations to make from {mutations_to_make_csv=}")
mutations_to_make = pd.read_csv(mutations_to_make_csv)[
["sequential_site", "wildtype_aa", "mutant_aa", "representation"]
]
assert len(mutations_to_make) == len(mutations_to_make.drop_duplicates())
if any(mutations_to_make["wildtype_aa"] == mutations_to_make["mutant_aa"]):
raise ValueError(
"'mutations_to_make_csv' has some sites where 'wildtype_aa' = 'mutant_aa'; "
"remove these."
)
if len(mutations_to_make) != len(
mutations_to_make.groupby(["sequential_site", "mutant_aa"])
):
raise ValueError(
"Rows in 'mutations_to_make_csv' do not each specify unique "
"'sequential_site' and 'mutant_aa'."
)
# check protein in `mutations_to_make` matches that encoded by tiles
prot_to_make = mutations_to_make[["sequential_site", "wildtype_aa"]].drop_duplicates()
if len(prot_to_make) != prot_to_make["sequential_site"].nunique():
raise ValueError(
"'mutations_to_make_csv' has multiple 'wildtype_aa' for some 'sequential_site'"
)
prot_to_make = prot_to_make.set_index("sequential_site")["wildtype_aa"].to_dict()
for r, aa in prot_to_make.items():
if r > len(prot_from_tiles):
raise ValueError(
f"'sequential_site' {r} in 'mutations_to_make_csv' it outside range of "
"protein specified in 'tiles_csv'"
)
if prot_from_tiles[r - 1] != aa:
raise ValueError(
f"At 'sequential_site' {r}, mismatch in 'wildtype_aa' in "
"'mutations_to_make_csv' and protein encoded in 'tiles_csv': "
f"{aa} versus {prot_from_tiles[r - 1]}"
)
print("Representation values for the mutations to make:")
print(
mutations_to_make
.groupby("representation")
.aggregate(n_mutations=pd.NamedAgg("sequential_site", "count"))
)
mutations_to_make = mutations_to_make.query("representation > 0").assign(
representation=lambda x: x["representation"].clip(upper=max_representation)
)
print("Representations after removing zeros and clipping at {max_representation=}")
print(
mutations_to_make
.groupby("representation")
.aggregate(n_mutations=pd.NamedAgg("sequential_site", "count"))
)
print(
f"So overall, we will make {len(mutations_to_make)} mutations encompassing "
f"{mutations_to_make['representation'].sum()} non-wildtype oligos.\n"
)
avoid_motifs = set(
[m.upper() for m in avoid_motifs]
+ [str(Bio.Seq.Seq(m).reverse_complement()) for m in avoid_motifs]
)
print(f"We will avoid the following motifs:\n{avoid_motifs}\n")
assert all(re.fullmatch("[ATCG]+", m) for m in avoid_motifs)
nt_from_tiles = "".join(tiles["inframe_mutated_region"])
for motif in avoid_motifs:
if motif in nt_from_tiles:
raise ValueError(
f"{motif=} is already in parent nucleotide sequence in 'tiles_csv'"
)
print(f"Reading the codon frequencies to use from {codon_freqs_csv=}\n")
codon_freqs = pd.read_csv(codon_freqs_csv)[["codon", "aa", "frequency"]].assign(
codon=lambda x: x["codon"].str.upper(),
aa=lambda x: x["aa"].str.upper(),
)
assert len(codon_freqs) == 64
possible_codons = {
"".join(tup) for tup in itertools.product(["A", "C", "T", "G"], repeat=3)
}
assert set(codon_freqs["codon"]) == possible_codons, f"{codon_freqs['codon']=}\n{possible_codons=}"
aa_to_codon = (
codon_freqs
.sort_values("frequency", ascending=False)
.groupby("aa")
.aggregate(codons=pd.NamedAgg("codon", list))
["codons"]
.to_dict()
)
aa_to_codon["-"] = [""]
assert len(aa_to_codon) == 22, f"{len(aa_to_codon)=}"
# design the oligos
oligos = []
n_mut_oligos = 0
for tile_tup in tiles.itertuples():
fragment = tile_tup.fragment
start = tile_tup.sequential_start
end = tile_tup.sequential_end
upstream_flank = tile_tup.upstream_flank.lower()
downstream_flank = tile_tup.downstream_flank.lower()
ntseq_by_codon = [
tile_tup.inframe_mutated_region[3 * r: 3 * r + 3]
for r in range(len(tile_tup.inframe_mutated_region) // 3)
]
assert "".join(ntseq_by_codon) == tile_tup.inframe_mutated_region
tile_muts = mutations_to_make.query(
"(sequential_site >= @start) and (sequential_site <= @end)"
)
n_tile_mut_oligos = tile_muts["representation"].sum()
n_tile_wt_oligos = int(math.ceil(n_tile_mut_oligos * wildtype_frac))
print(
f"For tile {fragment=} making {len(tile_muts)} mutations with "
f"{n_tile_mut_oligos} oligos; also {n_tile_wt_oligos} wildtype oligos."
)
if len(tile_muts) == 0:
raise ValueError(f"No mutations to make for tile {fragment=}")
oligos += [
(
f"tile-{fragment}_wildtype_{i + 1}",
upstream_flank + "".join(ntseq_by_codon) + downstream_flank
)
for i in range(n_tile_wt_oligos)
]
for mut_tup in tile_muts.itertuples():
r = mut_tup.sequential_site - start
wt_codon = ntseq_by_codon[r]
wt_aa = str(Bio.Seq.Seq(wt_codon).translate())
assert mut_tup.wildtype_aa == wt_aa, f"{wt_aa=}, {wt_codon=}, {mut_tup.wildtype_aa=}"
for i, mut_codon in zip(
range(mut_tup.representation), itertools.cycle(aa_to_codon[mut_tup.mutant_aa])
):
oligo_name = f"tile-{fragment}_{wt_aa}{mut_tup.sequential_site}{mut_tup.mutant_aa}_{i + 1}"
oligo = "".join(ntseq_by_codon[: r] + [mut_codon] + ntseq_by_codon[r + 1:])
for motif in avoid_motifs:
if motif in oligo:
oligo = remove_motif(oligo, motif, aa_to_codon)
oligos.append((oligo_name, upstream_flank + oligo + downstream_flank))
n_mut_oligos += 1
assert n_mut_oligos == mutations_to_make["representation"].sum() <= len(oligos)
print(f"\nOverall designed {len(oligos)} oligos including the wildtype ones.")
nunique = len(set(tup[1] for tup in oligos))
print(f"{nunique} of these oligos have unique sequences.")
print(f"\nWriting the oligos to {output_oligos_fasta=}")
with open(output_oligos_fasta, "w") as f:
f.write("".join(f">{oligo_name}\n{oligo}\n" for (oligo_name, oligo) in oligos))
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description=(
"Design oligos for tiles for Golden-Gate assembly codon mutagenesis. "
"To use this script, first you need to break your gene into tiles of "
"that can be ordered (be sure to design tiles that will give good "
"overhangs; https://pubs.acs.org/doi/10.1021/acssynbio.8b00333). "
"You then specify those tiles using the '--tiles_csv' argument, and "
"also specify the mutations to make and the representation (number of "
"oligos) for each one in '--mutations_to_make_csv'. A representation of 1 "
"means a single oligo for that mutation is made; larger representation "
"values mean more oligos for each mutation are made which should increase "
"its representation in the final library. See also '--max_representation'. "
"If multiple oligos are made for the same mutation, when possible they "
"use different codons."
),
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--tiles_csv",
help=(
"CSV with nucleotide sequences of tiles, should have columns 'fragment' "
"(fragment name), 'fragment_sequence' (full nucleotide sequence of fragment)"
", and 'inframe_mutated_region' (nucleotide sequence of part of fragment "
"that is in-frame mutated region of gene). Fragments must be in order that "
"their 'inframe_mutation_region' sequences should be concatenated to make "
"the full gene. The overall 'fragment_sequence' will have flanking regions "
" for Golden Gate assembly that are not present in 'inframe_mutated_region'. "
"Be sure to specify any restriction enzymes that will be "
"used in '--avoid_motifs'."
),
required=True,
)
parser.add_argument(
"--mutations_to_make_csv",
help=(
"CSV with mutations to make. Must include columns 'sequential_site' ("
"site number in 1, 2, numbering of protein), 'wildtype_aa' (parental "
"amino acid at that site), 'mutant_aa' (the mutation to make at the "
"site), and 'representation' (how many oligos to make with that "
"mutation; see also '--max-representation')."
),
required=True,
)
parser.add_argument(
"--output_oligos_fasta",
help=(
"Output FASTA file with created oligos. The oligos are named according "
"to the sequential site that is mutated (not the reference site)"
),
required=True,
)
parser.add_argument(
"--max_representation",
default=2,
help=(
"The maximum representation (number of oligos) for any mutation "
"regardless of value given in '--mutations_to_make_csv'."
),
type=int,
)
parser.add_argument(
"--wildtype_frac",
default=0.005,
help=(
"For each tile, a wildtype sequence is included to an amount equal to "
"ceiling of this fraction times the number of mutations for that tile."
),
type=float,
)
parser.add_argument(
"--avoid_motifs",
help="Avoid these motifs and reverse complements (typically restrition sites).",
default=["CGTCTC"],
nargs="+",
)
parser.add_argument(
"--codon_freqs_csv",
help=(
"File specifying a frequency for each codon for an amino acid. Codons are "
"chose to first prioritize the highest-frequency one for that amino acid. "
"Must have columns 'codon', 'aa', and 'frequency'."
),
default="https://raw.githubusercontent.com/jbloomlab/gga_codon_muts_oligo_design/main/human_codon_freq.csv",
)
if len(sys.argv) == 1:
parser.print_help(sys.stderr)
sys.exit()
args = parser.parse_args()
gga_codon_muts_oligo_design(**vars(args))