-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
200 lines (147 loc) · 7.27 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import time
from cosine_annealing import CosineAnnealingWarmUpRestarts
import torch
import argparse
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
from train_data_functions import TrainData
from val_data_functions import ValData
from utils import to_psnr, print_log, validation, adjust_learning_rate
from torchvision.models import vgg16
from perceptual import LossNetwork
import os
import numpy as np
import random
from transweather_model import Transweather
plt.switch_backend('agg')
# --- Parse hyper-parameters --- #
parser = argparse.ArgumentParser(description='Hyper-parameters for network')
parser.add_argument('-learning_rate', help='Set the learning rate', default=2e-4, type=float)
parser.add_argument('-crop_size', help='Set the crop_size', default=[256, 256], nargs='+', type=int)
parser.add_argument('-train_batch_size', help='Set the training batch size', default=18, type=int)
parser.add_argument('-epoch_start', help='Starting epoch number of the training', default=0, type=int)
parser.add_argument('-lambda_loss', help='Set the lambda in loss function', default=0.04, type=float)
parser.add_argument('-val_batch_size', help='Set the validation/test batch size', default=1, type=int)
parser.add_argument('-exp_name', help='directory for saving the networks of the experiment', type=str)
parser.add_argument('-seed', help='set random seed', default=19, type=int)
parser.add_argument('-num_epochs', help='number of epochs', default=200, type=int)
args = parser.parse_args()
learning_rate = args.learning_rate
crop_size = args.crop_size
train_batch_size = args.train_batch_size
epoch_start = args.epoch_start
lambda_loss = args.lambda_loss
val_batch_size = args.val_batch_size
exp_name = args.exp_name
num_epochs = args.num_epochs
#set seed
seed = args.seed
if seed is not None:
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
random.seed(seed)
print('Seed:\t{}'.format(seed))
print('--- Hyper-parameters for training ---')
print('learning_rate: {}\ncrop_size: {}\ntrain_batch_size: {}\nval_batch_size: {}\nlambda_loss: {}'.format(learning_rate, crop_size,
train_batch_size, val_batch_size, lambda_loss))
train_data_dir = './data/train/'
val_data_dir = './data/test/'
# --- Gpu device --- #
device_ids = [Id for Id in range(torch.cuda.device_count())]
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# --- Define the network --- #
net = Transweather()
# --- Build optimizer --- #
optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate)
# --- Multi-GPU --- #
net = net.to(device)
net = nn.DataParallel(net, device_ids=device_ids)
# --- Define the perceptual loss network --- #
vgg_model = vgg16(pretrained=True).features[:16]
vgg_model = vgg_model.to(device)
# vgg_model = nn.DataParallel(vgg_model, device_ids=device_ids)
for param in vgg_model.parameters():
param.requires_grad = False
# --- Load the network weight --- #
if os.path.exists('./weights/{}/'.format(exp_name))==False:
os.mkdir('./weights/{}/'.format(exp_name))
try:
net.load_state_dict(torch.load('./weights/{}/best'.format(exp_name)))
print('--- weight loaded ---')
except:
print('--- no weight loaded ---')
# pytorch_total_params = sum(p.numel() for p in net.parameters() if p.requires_grad)
# print("Total_params: {}".format(pytorch_total_params))
loss_network = LossNetwork(vgg_model)
loss_network.eval()
# --- Load training data and validation/test data --- #
### The following file should be placed inside the directory "./data/train/"
labeled_name = 'allfilter.txt'
### The following files should be placed inside the directory "./data/test/"
# val_filename = 'val_list_rain800.txt'
val_filename1 = 'allfilter.txt'
# --- Load training data and validation/test data --- #
lbl_train_data_loader = DataLoader(TrainData(crop_size, train_data_dir,labeled_name), batch_size=train_batch_size, shuffle=True, num_workers=8)
## Uncomment the other validation data loader to keep an eye on performance
## but note that validating while training significantly increases the train time
# val_data_loader = DataLoader(ValData(val_data_dir,val_filename), batch_size=val_batch_size, shuffle=False, num_workers=8)
val_data_loader1 = DataLoader(ValData(val_data_dir,val_filename1), batch_size=val_batch_size, shuffle=False, num_workers=8)
# --- Previous PSNR and SSIM in testing --- #
net.eval()
################ Note########################
## Uncomment the other validation data loader to keep an eye on performance
## but note that validating while training significantly increases the test time
# old_val_psnr, old_val_ssim = validation(net, val_data_loader, device, exp_name)
old_val_psnr1, old_val_ssim1 = validation(net, val_data_loader1, device, exp_name)
# print('Rain 800 old_val_psnr: {0:.2f}, old_val_ssim: {1:.4f}'.format(old_val_psnr, old_val_ssim))
print('old_val_psnr: {0:.2f}, old_val_ssim: {1:.4f}'.format(old_val_psnr1, old_val_ssim1))
net.train()
# scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.95)
scheduler = CosineAnnealingWarmUpRestarts(optimizer, T_0=100, T_mult=1, eta_max=0.1, T_up=10, gamma=0.5)
for epoch in range(epoch_start,num_epochs):
psnr_list = []
start_time = time.time()
# adjust_learning_rate(optimizer, epoch)
scheduler.step()
print('Epoch-{0} lr: {1}'.format(epoch, optimizer.param_groups[0]['lr']))
#-------------------------------------------------------------------------------------------------------------
for batch_id, train_data in enumerate(lbl_train_data_loader):
input_image, gt, imgid = train_data
input_image = input_image.to(device)
gt = gt.to(device)
# --- Zero the parameter gradients --- #
optimizer.zero_grad()
# --- Forward + Backward + Optimize --- #
net.train()
pred_image = net(input_image)
smooth_loss = F.smooth_l1_loss(pred_image, gt)
perceptual_loss = loss_network(pred_image, gt)
loss = smooth_loss + lambda_loss*perceptual_loss
loss.backward()
optimizer.step()
# --- To calculate average PSNR --- #
psnr_list.extend(to_psnr(pred_image, gt))
if not (batch_id % 100):
print('Epoch: {0}, Iteration: {1}'.format(epoch, batch_id))
# --- Calculate the average training PSNR in one epoch --- #
train_psnr = sum(psnr_list) / len(psnr_list)
# --- Save the network parameters --- #
torch.save(net.state_dict(), './weights/{}/latest'.format(exp_name))
# --- Use the evaluation model in testing --- #
net.eval()
# val_psnr, val_ssim = validation(net, val_data_loader, device, exp_name)
val_psnr1, val_ssim1 = validation(net, val_data_loader1, device, exp_name)
one_epoch_time = time.time() - start_time
# print("Rain 800")
# print_log(epoch+1, num_epochs, one_epoch_time, train_psnr, val_psnr, val_ssim, exp_name)
print("allfilter")
print_log(epoch+1, num_epochs, one_epoch_time, train_psnr, val_psnr1, val_ssim1, exp_name)
# --- update the network weight --- #
if (val_psnr1) >= (old_val_psnr1):
torch.save(net.state_dict(), './weights/{}/best'.format(exp_name))
print('model saved')
old_val_psnr1 = val_psnr1
# Note that we find the best model based on validating with raindrop data.