-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_t2t_stage2.py
623 lines (535 loc) · 27 KB
/
train_t2t_stage2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
import argparse
import logging
import math
import os
import random
import shutil
import time
from copy import deepcopy
import numpy as np
import torch
import torch.nn.functional as F
import torch.optim as optim
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader, Subset
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from skimage.filters import threshold_otsu
from helper.util import AverageMeter, accuracy
from dataset.cifar100 import get_cifar100_dataloaders
from models import model_dict
from torchvision import transforms
from utils.randaugment import RandAugmentMC
logger = logging.getLogger(__name__)
best_acc = 0
def save_checkpoint(state, is_best, checkpoint, filename='checkpoint.pth.tar'):
filepath = os.path.join(checkpoint, filename)
torch.save(state, filepath)
if is_best:
shutil.copyfile(filepath, os.path.join(checkpoint,'model_best.pth.tar'))
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
class TransformFixMatch(object):
def __init__(self, mean, std):
self.weak = transforms.Compose([
transforms.Resize(32),
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(size=32,padding=int(32*0.125),padding_mode='reflect')])
self.strong = transforms.Compose([transforms.Resize(32),
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(size=32,padding=int(32*0.125),
padding_mode='reflect'),
RandAugmentMC(n=2, m=10)])
self.normalize = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std)])
def __call__(self, x):
weak = self.weak(x)
strong = self.strong(x)
return self.normalize(weak), self.normalize(strong)
def linear_rampup(current, rampup_length):
if rampup_length == 0:
return 1.0
else:
current = np.clip(current / rampup_length, 0.0, 1.0)
return float(current)
def get_cosine_schedule_with_warmup(optimizer,
num_warmup_steps,
num_training_steps,
num_cycles=7./16.,
last_epoch=-1):
def _lr_lambda(current_step):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
no_progress = float(current_step - num_warmup_steps) / \
float(max(1, num_training_steps - num_warmup_steps))
return max(0., math.cos(math.pi * num_cycles * no_progress))
return LambdaLR(optimizer, _lr_lambda, last_epoch)
def main():
parser = argparse.ArgumentParser(description='PyTorch T2T Stage2 Training')
parser.add_argument('--gpu-id', default='0', type=int,help='id(s) for CUDA_VISIBLE_DEVICES')
parser.add_argument('--arch', default='wrn_40_1', type=str,choices=['wrn_40_1','resnet8x4','ShuffleV1'],help='dataset name')
parser.add_argument('--mu', default=5, type=int, help='coefficient of unlabeled batch size')
parser.add_argument('--resume', default='', type=str, help='path to latest checkpoint (default: none)')
parser.add_argument('--out', default='./Results/T2T/Stage2/', help='directory to output the result')
parser.add_argument('--filter-every-epoch', type=int, default=20, help='every K epoch to filter in distribution unlabeled data')
parser.add_argument('--lmx', default=1, type=float)
parser.add_argument('--lrot', default=1, type=float)
parser.add_argument('--lun', default=1, type=float)
parser.add_argument('--total-steps', default=200000, type=int, help='number of total steps to run')
parser.add_argument('--eval-step', default=1000, type=int, help='number of eval steps to run')
parser.add_argument('--num-workers', type=int, default=8, help='number of workers')
parser.add_argument('--dataset', default='cifar100', type=str, choices=['cifar100'],help='dataset name')
parser.add_argument('--num-labeled', type=int, default=4000, help='number of labeled data')
parser.add_argument('--num-val', type=int, default=5000, help='number of validation data')
parser.add_argument("--expand-labels", action="store_true", help="expand labels to fit eval steps")
parser.add_argument('--start-epoch', default=0, type=int, help='manual epoch number (useful on restarts)')
parser.add_argument('--batch-size', default=64, type=int, help='train batchsize')
parser.add_argument('--lr', '--learning-rate', default=0.03, type=float,help='initial learning rate')
parser.add_argument('--warmup', default=0, type=float,help='warmup epochs (unlabeled data based)')
parser.add_argument('--wdecay', default=5e-4, type=float,help='weight decay')
parser.add_argument('--nesterov', action='store_true', default=True,help='use nesterov momentum')
parser.add_argument('--lambda-u', default=1, type=float,help='coefficient of unlabeled loss')
parser.add_argument('--T', default=1, type=float,help='pseudo label temperature')
parser.add_argument('--threshold', default=0.95, type=float,help='pseudo label threshold')
parser.add_argument('--seed', default=5, type=int,help="random seed")
parser.add_argument("--local_rank", type=int, default=-1,help="For distributed training: local_rank")
parser.add_argument('--no-progress', action='store_true', help="don't use progress bar")
parser.add_argument('--ood-dataset', type=str, default='tin',
choices=['tin','places'],
help='choose one dataset as ood data source')
args = parser.parse_args()
if args.seed is not None:
set_seed(args)
args.out = args.out+'/'+str(args.arch)+'_'+str(args.ood_dataset)+'_lmx_'+str(args.lmx)+'_lrot_'+str(args.lrot)+'_lun_'+str(args.lun)
os.makedirs(args.out, exist_ok=True)
args.writer = SummaryWriter(args.out)
if torch.cuda.is_available():
args.device = 'cuda'
else:
args.device = 'cpu'
args.num_classes = 100
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
args.epochs = math.ceil(args.total_steps / args.eval_step)
def create_model(args):
model = model_dict[args.arch](num_classes=args.num_classes)
data = torch.randn(2, 3, 32, 32)
model.eval()
feats, _ = model(data, is_feat=True)
logger.info("Total params: {:.2f}M".format(sum(p.numel() for p in model.parameters()) / 1e6))
rotnet_head = torch.nn.Linear(feats[-1].size(1), 4)
from utils.t2t import CrossModalMatchingHead
cmm_head = CrossModalMatchingHead(args.num_classes, feats[-1].size(1))
model.train()
return model, rotnet_head, cmm_head
## use labeled transformer
train_loader, utrain_loader, test_loader, n_data = get_cifar100_dataloaders(batch_size=args.batch_size, num_workers=args.num_workers, is_instance=True, ood = args.ood_dataset,is_sample=False)
labeled_trainloader = train_loader
## fixmatch transformer
unlabeled_dataset = deepcopy(utrain_loader.dataset)
unlabeled_trainloader = DataLoader(unlabeled_dataset, batch_size=args.batch_size*args.mu, shuffle=True, num_workers=args.num_workers, drop_last=True)
unlabeled_trainloader.dataset.transform = TransformFixMatch(mean=(0.5071, 0.4867, 0.4408),std=(0.2675, 0.2565, 0.2761))
## use labeled transformer
udst_rotnet = deepcopy(utrain_loader.dataset)
udst_rotnet.transform = labeled_trainloader.dataset.transform
udst_rotnet_loader = DataLoader(udst_rotnet,batch_size=args.batch_size,shuffle=True,num_workers=args.num_workers,drop_last=True)
model, rotnet_head, cmm_head = create_model(args)
model, rotnet_head, cmm_head = model.to(args.device), rotnet_head.to(args.device), cmm_head.to(args.device)
if args.resume:
logger.info("==> Resuming from checkpoint..")
assert os.path.isfile(args.resume), "Error: no checkpoint directory found!"
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['model_state_dict'])
rotnet_head.load_state_dict(checkpoint['rotnet_state_dict'])
cmm_head.load_state_dict(checkpoint['cmm_state_dict'])
test_loss, test_acc = test(args, test_loader, model, 0)
print('before 2nd stage training', test_acc)
udst_eval = deepcopy(utrain_loader.dataset)
udst_eval.transform = test_loader.dataset.transform
udst_eval_loader = DataLoader(udst_eval, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers)
unlabeled_dataset = deepcopy(utrain_loader.dataset)
train_stage2(args, labeled_trainloader, unlabeled_trainloader, test_loader,
udst_rotnet_loader, udst_eval_loader, unlabeled_dataset,
model, rotnet_head, cmm_head)
def train_stage2(args, labeled_trainloader, unlabeled_trainloader, test_loader,
udst_rotnet_loader, udst_eval_loader, unlabeled_dataset,
model, rotnet_head, cmm_head):
"""
In this stage, we train the model with five losses:
1. Lx: cross-entropy loss for labeled data (ref to L_ce)
2. Lmx: cross-modal matching loss for labeled data (ref to L_cm^l)
3. Lr: rotation recognition loss for all training data (ref to L_rot)
4. Lmu: cross-modal matching loss for unlabeled data (ref to L_cm^u)
5. Lu: consistency constraint loss for filtered unlabeled data (ref to L_cc)
"""
global best_acc
test_accs = []
end = time.time()
grouped_parameters = [
{'params': model.parameters()},
{'params': rotnet_head.parameters()},
{'params': cmm_head.parameters()}
]
# args.epoch = 240
# optimizer = optim.SGD(grouped_parameters, lr=0.03, momentum=0.9, weight_decay=5e-4, nesterov=True)
# scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[150,180,210], gamma=0.2)
# flag = True
optimizer = optim.SGD(grouped_parameters, lr=0.03, momentum=0.9, weight_decay=5e-4, nesterov=True)
scheduler = get_cosine_schedule_with_warmup(optimizer, args.warmup, args.total_steps)
flag = False
labeled_iter = iter(labeled_trainloader)
unlabeled_iter = iter(unlabeled_trainloader)
rotnet_iter = iter(udst_rotnet_loader)
for epoch in range(args.start_epoch, args.epochs):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
losses_x = AverageMeter()
losses_u = AverageMeter()
losses_mx = AverageMeter()
losses_mu = AverageMeter()
losses_r = AverageMeter()
# clean unlabeled data periodically for consistency constraint loss
if epoch % args.filter_every_epoch == 0:
# from whole unlabeled dataset to select samples
in_dist_idxs = filter_ood(args, udst_eval_loader, model, cmm_head)
in_dist_unlabeled_dataset = Subset(unlabeled_dataset, in_dist_idxs)
unlabeled_trainloader = DataLoader(in_dist_unlabeled_dataset, batch_size=args.batch_size * args.mu,
shuffle=True, num_workers=args.num_workers, drop_last=True)
logging.info('use %d/%d' % (len(in_dist_idxs), len(unlabeled_dataset)))
model.train()
rotnet_head.train()
cmm_head.train()
if not args.no_progress:
p_bar = tqdm(range(args.eval_step))
for batch_idx in range(args.eval_step):
try:
inputs_x, targets_x, index_x = labeled_iter.next()
except:
labeled_iter = iter(labeled_trainloader)
inputs_x, targets_x, index_x = labeled_iter.next()
try:
(inputs_u_w, inputs_u_s), index_u = unlabeled_iter.next()
except:
unlabeled_iter = iter(unlabeled_trainloader)
(inputs_u_w, inputs_u_s), index_u = unlabeled_iter.next()
try:
inputs_r, index_u = rotnet_iter.next()
except:
rotnet_iter = iter(udst_rotnet_loader)
inputs_r, index_u = rotnet_iter.next()
# rotate unlabeled data with 0, 90, 180, 270 degrees
inputs_r = torch.cat([torch.rot90(inputs_r, i, [2, 3]) for i in range(4)], dim=0)
targets_r = torch.cat([torch.empty(index_u.size(0)).fill_(i).long() for i in range(4)], dim=0).to(
args.device)
data_time.update(time.time() - end)
batch_size = inputs_x.shape[0]
# TODO: check input
inputs = torch.cat((inputs_x, inputs_u_w, inputs_u_s)).to(args.device)
feats_all, logits = model(inputs, is_feat=True)
feats = feats_all[-1].view(feats_all[-1].size(0), -1)
logits_x = logits[:batch_size] # labeled
logits_u_w, logits_u_s = logits[batch_size:].chunk(2) # unlabeled
feats_x = feats[:batch_size]
# del logits
# Labeled Data: cross Entropy Loss for
targets_x = targets_x.to(args.device)
Lx = F.cross_entropy(logits_x, targets_x, reduction='mean')
# Unlabeled Data:Consistency Constraint Loss
# hyper parameters for UDA
T = 0.4
p_cutoff = 0.8
logits_tgt = logits_u_w / T
probs_u_w = torch.softmax(logits_u_w, dim=1)
loss_mask = probs_u_w.max(-1)[0].ge(p_cutoff)
if loss_mask.sum() == 0:
Lu = torch.zeros(1, dtype=torch.float).to(args.device)
else:
Lu = F.kl_div(torch.log_softmax(logits_u_s[loss_mask], -1),
torch.softmax(logits_tgt[loss_mask].detach().data, -1), reduction='batchmean')
# Labeled: Cross Modal Matching Training:
# 1 positve pair + 2 negative pairs for each labeled data
# [--pos--, --hard_neg--, --easy_neg--]
matching_gt = torch.zeros(3 * batch_size).to(args.device)
matching_gt[:batch_size] = 1
y_onehot = torch.zeros((3 * batch_size, args.num_classes)).float().to(args.device)
y = torch.zeros(3 * batch_size).long().to(args.device)
y[:batch_size] = targets_x
with torch.no_grad():
prob_sorted_index = torch.argsort(logits_x, descending=True)
for i in range(batch_size):
if prob_sorted_index[i, 0] == targets_x[i]:
y[1 * batch_size + i] = prob_sorted_index[i, 1]
y[2 * batch_size + i] = int(np.random.choice(prob_sorted_index[i, 2:].cpu(), 1))
else:
y[1 * batch_size + i] = prob_sorted_index[i, 0]
choice = int(np.random.choice(prob_sorted_index[i, 1:].cpu(), 1))
while choice == targets_x[i]:
choice = int(np.random.choice(prob_sorted_index[i, 1:].cpu(), 1))
y[2 * batch_size + i] = choice
y_onehot.scatter_(1, y.view(-1, 1), 1)
matching_score_x = cmm_head(feats_x.repeat(3, 1), y_onehot)
Lmx = F.binary_cross_entropy_with_logits(matching_score_x.view(-1), matching_gt)
# Unlabeled: Cross Entropy Loss for Rotation Recognition
inputs_r = inputs_r.to(args.device)
feats_all, logits_r = model(inputs_r, is_feat=True)
feats_r = feats_all[-1].view(feats_all[-1].size(0), -1)
Lr = F.cross_entropy(rotnet_head(feats_r), targets_r, reduction='mean')
# unlabeled data: Cross Modal Matching Training:
# Use Entropy Minimization Loss for all unlabeled data (including OOD data)
# So we use data from RotNet Dataloder which has all training data
batch_size = inputs_r.size(0) // 4
y_onehot = torch.zeros((2 * batch_size, args.num_classes)).float().to(args.device)
y = torch.zeros(2 * batch_size).long().to(args.device)
# select the most confident class and randomly choose one from rest classes
with torch.no_grad():
prob_sorted_index = torch.argsort(logits_r[:batch_size], descending=True)
y[:batch_size] = prob_sorted_index[:, 0]
for i in range(batch_size):
y[batch_size + i] = int(np.random.choice(prob_sorted_index[i, 1:].cpu(), 1))
y_onehot.scatter_(1, y.view(-1, 1), 1)
matching_score_u = cmm_head(feats_r[:batch_size].repeat(2, 1), y_onehot)
Lmu = F.binary_cross_entropy_with_logits(matching_score_u, torch.sigmoid(matching_score_u))
# we use linear ramp up weighting here for stabilizing training process
alpha = linear_rampup(epoch * args.eval_step + batch_idx, 40 * args.eval_step)
# TODO:all losses
loss = Lx + Lmx * args.lmx + Lr * args.lrot + alpha * (Lmu + Lu) * args.lun
optimizer.zero_grad()
loss.backward()
optimizer.step()
if not flag:
scheduler.step()
losses.update(loss.item())
losses_x.update(Lx.item())
losses_mx.update(Lmx.item())
losses_mu.update(Lmx.item())
losses_r.update(Lr.item())
losses_u.update(Lu.item())
batch_time.update(time.time() - end)
end = time.time()
if not args.no_progress:
p_bar.set_description(
"Train Epoch: {epoch}/{epochs:4}. Iter: {batch:4}/{iter:4}. LR: {lr:.4f}. Data: {data:.3f}s. Batch: {bt:.3f}s. "
"Loss: {loss:.4f}. Loss_x: {loss_x:.4f}. Loss_mx: {loss_mx:.4f}. Loss_r: {loss_r:.4f}. Loss_mu: {loss_mu:.4f}. "
"Loss_u: {loss_u:.4f}. alpha: {alpha:.4f}".format(
epoch=epoch + 1,
epochs=args.epochs,
batch=batch_idx + 1,
iter=args.eval_step,
lr=scheduler.get_last_lr()[0],
data=data_time.avg,
bt=batch_time.avg,
loss=losses.avg,
loss_x=losses_x.avg,
loss_mx=losses_mx.avg,
loss_r=losses_r.avg,
loss_mu=losses_mu.avg,
loss_u=losses_u.avg,
alpha=alpha
))
p_bar.update()
if flag:
scheduler.step()
if not args.no_progress:
p_bar.close()
test_loss, test_acc = test(args, test_loader, model, epoch)
args.writer.add_scalar('train/1.train_loss', losses.avg, epoch)
args.writer.add_scalar('train/2.train_loss_x', losses_x.avg, epoch)
args.writer.add_scalar('train/3.train_loss_mx', losses_mx.avg, epoch)
args.writer.add_scalar('train/4.train_loss_r', losses_r.avg, epoch)
args.writer.add_scalar('train/5.train_loss_mu', losses_mu.avg, epoch)
args.writer.add_scalar('train/6.train_loss_u', losses_u.avg, epoch)
args.writer.add_scalar('train/7.used_un', len(unlabeled_trainloader.dataset), epoch)
args.writer.add_scalar('test/1.test_acc', test_acc, epoch)
args.writer.add_scalar('test/2.test_loss', test_loss, epoch)
is_best = test_acc > best_acc
best_acc = max(test_acc, best_acc)
model_to_save = model.module if hasattr(model, "module") else model
save_checkpoint({
'epoch': epoch + 1,
'model_state_dict': model_to_save.state_dict(),
'rotnet_state_dict': rotnet_head.state_dict(),
'cmm_state_dict': cmm_head.state_dict(),
'acc': test_acc,
'best_acc': best_acc,
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
}, is_best, args.out)
test_accs.append(test_acc)
logger.info('Best top-1 acc(test): {:.2f}'.format(best_acc))
logger.info('Mean top-1 acc(test): {:.2f}'.format(np.mean(test_accs[-20:])))
logger.info('curr top-1 acc(test): {:.2f}'.format(test_acc))
def test(args, test_loader, model, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
if not args.no_progress:
test_loader = tqdm(test_loader)
model.eval()
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(test_loader):
data_time.update(time.time() - end)
inputs = inputs.to(args.device)
targets = targets.to(args.device)
outputs = model(inputs)
loss = F.cross_entropy(outputs, targets)
prec1, prec5 = accuracy(outputs, targets, topk=(1, 5))
losses.update(loss.item(), inputs.shape[0])
top1.update(prec1.item(), inputs.shape[0])
top5.update(prec5.item(), inputs.shape[0])
batch_time.update(time.time() - end)
end = time.time()
if not args.no_progress:
test_loader.set_description("Test Iter: {batch:4}/{iter:4}. Data: {data:.3f}s. Batch: {bt:.3f}s. Loss: {loss:.4f}. top1: {top1:.2f}. top5: {top5:.2f}. ".format(
batch=batch_idx + 1,
iter=len(test_loader),
data=data_time.avg,
bt=batch_time.avg,
loss=losses.avg,
top1=top1.avg,
top5=top5.avg,
))
if not args.no_progress:
test_loader.close()
logger.info("top-1 acc: {:.2f}".format(top1.avg))
logger.info("top-5 acc: {:.2f}".format(top5.avg))
model.train()
return losses.avg, top1.avg
def filter_ood(args, loader, model, cmm_head):
# switch to evaluate mode
model.eval()
cmm_head.eval()
matching_scores = []
idxs = []
in_dist_idxs = []
with torch.no_grad():
for batch_idx, (input,indexs) in enumerate(loader):
input = input.to(args.device)
feats_all, logits = model(input, is_feat=True)
feats = feats_all[-1].view(feats_all[-1].size(0),-1)
y_onehot = torch.zeros((input.size(0), args.num_classes)).float().to(args.device)
y_pred = torch.argmax(logits, dim=1, keepdim=True)
y_onehot.scatter_(1, y_pred, 1)
matching_score = torch.sigmoid(cmm_head(feats, y_onehot))
for i in range(len(input)):
matching_scores.append(matching_score[i].cpu().item())
idxs.append(indexs[i].item())
# use otsu threshold to adaptively compute threshold
matching_scores = np.array(matching_scores)
thresh = threshold_otsu(matching_scores)
for i, s in enumerate(matching_scores):
if s > thresh:
in_dist_idxs.append(idxs[i])
logger.info('OOD Filtering threshold: %.3f' % thresh)
model.train()
cmm_head.train()
return in_dist_idxs
# def train_stage2_debug(args, labeled_trainloader, unlabeled_trainloader, test_loader,
# udst_rotnet_loader, udst_eval_loader, unlabeled_dataset,
# model, rotnet_head, cmm_head):
# global best_acc
# test_accs = []
# end = time.time()
#
# grouped_parameters = [
# {'params': model.parameters()},
# {'params': rotnet_head.parameters()},
# {'params': cmm_head.parameters()}
# ]
#
# optimizer = optim.SGD(grouped_parameters, lr=0.03, momentum=0.9, weight_decay=5e-4, nesterov=True)
# # scheduler = get_cosine_schedule_with_warmup(optimizer, args.warmup, args.total_steps)
# scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[150,180,210], gamma=0.2)
#
# labeled_iter = iter(labeled_trainloader)
# unlabeled_iter = iter(unlabeled_trainloader)
# rotnet_iter = iter(udst_rotnet_loader)
# args.eval_step = len(labeled_trainloader)
#
# for epoch in range(args.start_epoch, args.epochs):
# batch_time = AverageMeter()
# data_time = AverageMeter()
# losses = AverageMeter()
#
# model.train()
# rotnet_head.train()
# cmm_head.train()
#
# if not args.no_progress:
# p_bar = tqdm(range(args.eval_step))
#
# for batch_idx in range(args.eval_step):
# try:
# inputs_x, targets_x, index_x = labeled_iter.next()
# except:
# labeled_iter = iter(labeled_trainloader)
# inputs_x, targets_x, index_x = labeled_iter.next()
#
# data_time.update(time.time() - end)
# batch_size = inputs_x.shape[0]
#
# inputs = inputs_x.to(args.device)
# feats_all, logits = model(inputs, is_feat=True)
# logits_x = logits[:batch_size] # labeled
# targets_x = targets_x.to(args.device)
# Lx = F.cross_entropy(logits_x, targets_x, reduction='mean')
# loss = Lx
# optimizer.zero_grad()
# loss.backward()
# optimizer.step()
# losses.update(loss.item())
# batch_time.update(time.time() - end)
# end = time.time()
# if not args.no_progress:
# p_bar.set_description(
# "Train Epoch: {epoch}/{epochs:4}. Iter: {batch:4}/{iter:4}. LR: {lr:.4f}. Data: {data:.3f}s. Batch: {bt:.3f}s. "
# "Loss: {loss:.4f}".format(
# epoch=epoch + 1,
# epochs=args.epochs,
# batch=batch_idx + 1,
# iter=args.eval_step,
# lr=scheduler.get_last_lr()[0],
# data=data_time.avg,
# bt=batch_time.avg,
# loss=losses.avg,
# ))
# p_bar.update()
#
# if not args.no_progress:
# p_bar.close()
#
# scheduler.step()
# test_model = model
# test_loss, test_acc = test(args, test_loader, test_model, epoch)
# args.writer.add_scalar('test/1.test_acc', test_acc, epoch)
# args.writer.add_scalar('test/2.test_loss', test_loss, epoch)
#
# is_best = test_acc > best_acc
# best_acc = max(test_acc, best_acc)
#
# model_to_save = model.module if hasattr(model, "module") else model
# save_checkpoint({
# 'epoch': epoch + 1,
# 'model_state_dict': model_to_save.state_dict(),
# 'rotnet_state_dict': rotnet_head.state_dict(),
# 'cmm_state_dict': cmm_head.state_dict(),
# 'acc': test_acc,
# 'best_acc': best_acc,
# 'optimizer': optimizer.state_dict(),
# 'scheduler': scheduler.state_dict(),
# }, is_best, args.out)
#
# test_accs.append(test_acc)
# logger.info('Best top-1 acc(test): {:.2f}'.format(best_acc))
# logger.info('Mean top-1 acc(test): {:.2f}'.format(np.mean(test_accs[-20:])))
# logger.info('curr top-1 acc(test): {:.2f}'.format(test_acc))
if __name__ == '__main__':
main()