-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
91 lines (70 loc) · 3.51 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import argparse
from pathlib import Path
from tqdm import tqdm
import numpy as np
import pandas as pd
from lib.tracker import Tracker
from utils import init, data
def main(args: argparse.Namespace):
dataset = Path(args.dataset)
dest = Path(args.dest)
dest.mkdir(parents=True, exist_ok=True)
with tqdm(total=len(list(dataset.iterdir()))) as task:
for sequence in sorted(dataset.iterdir() if not args.no_sequence else [dataset]):
task.set_description(sequence.stem)
tracker = Tracker()
loader = data.Dataset(str(sequence), data.get(args.type), args.jump)
with open(str(dest.joinpath('{}.txt'.format(sequence.stem))), 'w') as file:
for frame, (image, boxes, scores, image_name) in enumerate(tqdm(loader)):
# Mask R-CNN Detection Support
if args.support is not None:
try:
support = Path(args.support).joinpath('{}.txt'.format(image_name))
support = pd.read_csv(str(support), header=None).values
support_boxes = support[:, 2:6]
support_boxes[:, 2:] -= support_boxes[:, :2]
support_scores = support[:, 1]
if args.support_only:
boxes = support_boxes
scores = support_scores
else:
boxes = np.concatenate([
boxes,
support_boxes,
])
scores = np.concatenate([
scores,
support_scores,
])
except pd.errors.EmptyDataError:
boxes = np.zeros((0, 4))
scores = np.zeros(0)
file.writelines(
map(lambda t: ', '.join(map(
str, [frame, t.id, *t.to_tlwh, 1, -1, -1, -1, -1]
)) + '\n', tracker.update(image, boxes, scores))
)
task.update()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Evaluate Multi Object Tracking')
parser.add_argument("--dataset", type=str, default='../datasets/MOT17/train',
help="train data path")
parser.add_argument("--no-sequence", action='store_true', default=False,
help="Run for only one sequence")
parser.add_argument("--dest", type=str, default='./results',
help="result destination")
parser.add_argument("--support", type=str, default=None,
help="Support detection")
parser.add_argument("--support-only", action='store_true', default=False,
help="Support detection only")
parser.add_argument("--type", type=str, default='MOT',
help="Dataset type, default=MOT")
parser.add_argument("--jump", type=int, default=10,
help="Jump")
parser.add_argument("--cache", action='store_true', default=False,
help="Use previous results for evaluation")
parser.add_argument("--seed", type=int, default=42,
help="Manual seed")
arguments = parser.parse_args()
init(arguments.seed)
main(arguments)