-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_detect_nucleoids.m
228 lines (179 loc) · 6.38 KB
/
example_detect_nucleoids.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
function example_detect_nucleoids()
% This script shows exemplarily how DNA and EdU spots are detected in the
% STED images. Some exemplary measurements are loaded. The user is given
% the possibility to change an initial threshold and interactively sees
% how many spots would be selected. After manual threshold selection is
% done, Gaussian peak functions are fit to each identified spot position to
% refine the positions.
%
% Requires that the nucleus is determined before.
%
% Part of "The TFAM to mtDNA ratio defines inner-cellular nucleoid
% populations with distinct activity levels"
%
% Jan Keller-Findeisen, Dep. NanoBiophotonics, MPI Biophysical Chemsitry,
% Göttingen, Germany
% load some example data
dna = imread('data/HDFa_EdU-incubation-18h_ROI9_DNA_AlexaFluor594_20nm-px.tiff');
edu = imread('data/HDFa_EdU-incubation-18h_ROI9_EdU_StarRed_20nm-px.tiff');
nucleus = imread('data/HDFa_EdU-incubation-18h_ROI9_nucleus-mask_20nm-pixelsize.tiff');
nucleus = nucleus > 0;
px = 20e-9; % 20nm pixel size
%% threshold DNA spot detection and fit them
fprintf('threshold DNA spots\n');
threshold = 0.1;
% thresholding
[im, d, object] = prepare_image(dna, nucleus, px);
[output, quit] = interactive_threshold(im, d, object, px, threshold, 'DNA example image');
% fitting spots
output.spots = fit_spots(output.positions(:, 1), output.positions(:, 2), dna, px, 100e-9);
% save output
save('data/dna_spots.mat', 'output');
%% threshold EdU spot detection and fit them
fprintf('threshold EdU spots\n');
threshold = 0.2;
% thresholding
[im, d, object] = prepare_image(edu, nucleus, px);
[output, quit] = interactive_threshold(im, d, object, px, threshold, 'EdU example image');
% fitting spots
output.spots = fit_spots(output.positions(:, 1), output.positions(:, 2), edu, px, 100e-9);
% output would now be saved
save('data/edu_spots.mat', 'output');
end
function spots = fit_spots(xi, yi, im, px, fwhm)
fprintf(' fit spots\n');
fwhmp = fwhm / px;
spots = fit_nucleoids(xi, yi, im, fwhmp);
spots(:, [5, 10, 11]) = spots(:, [5, 10, 11]) * px;
spots = [xi, yi, spots]; % add xi, yi to the beginning
end
function [im, data, object] = prepare_image(im, mask, px)
im = double(im);
% dilate mask a bit more
mask = imdilate(mask, ones(ceil(0.5e-6/px)));
% add border (include in mask)
B = ceil(0.5e-6/px);
[x,y] = ndgrid(1:size(mask,1),1:size(mask,2));
mask = mask | x <= B | x > size(mask,1)-B | y <= B | y > size(mask,2)-B;
% invert mask
object = ~mask;
% smooth image to be able to find peaks
% im_sm = img_smooth_mask(im, object, 0.08e-6 / px);
im_sm = img_smooth_mask(im, object, 0.12e-6 / px);
% smooth image to estimate background
im_bg = img_smooth_mask(im, object, 0.6e-6 / px);
% subtract both and set negative and in mask to zero
data = im_sm - 0.75 * im_bg;
data(~object) = 0;
data(data<0) = 0;
% suppress intensity in ~object of image to 1/6th
h = [max(im(~object)), max(im(object))];
im(~object) = im(~object) / h(1) * h(2) / 6;
% shrink object further by 2 px
object = imerode(object, ones(5));
end
function [output, quit] = interactive_threshold(im, data, object, px, t, fig_name)
% image, data, object, pixel size, initial threshold
% boundaries of object
object_boundaries = bwboundaries(object);
% min, max of image at least 50
R = [0, max(max(data(:)), 50)];
% step size
dt = 0.01;
% caxis_limits (start with min, max)
C = [0, 0.7 * max(im(:))];
dc = C(2) / 10;
% show figure (maximized)
fig = figure('units','normalized','outerposition',[0 0 1 1], 'Name', fig_name);
fig2 = ui_figure_second_screen();
% default parameters
show = true;
quit = false;
xi = [];
yi = [];
function update()
figure(fig);
hold off;
% display image
h = imagesc(im);
axis image;
colormap(hot);
caxis(C);
colorbar();
hold on;
% this is just to maximize the size of the image without loosing
% the scaling
pos = h.Parent.Position;
a = 0.02;
dpos = min([pos(1)-a, 1-a-pos(1)-pos(3), pos(2) - a, 1-a-pos(2)-pos(4)]) .* pos(3:4) / max(pos(3:4));
pos = pos + [-dpos(1), -dpos(2), 2*dpos(1), 2*dpos(2)];
h.Parent.Position = pos;
% display object boundaries
for i = 1 : length(object_boundaries)
b = object_boundaries{i};
plot(b(:, 2), b(:, 1), 'm');
end
% apply threshold
T = t*R(2)+(1-t)*R(1);
% specific things should be shown
% local max
[idx, vi, xi, yi] = omex_local_max(data, 'max', 8, T);
m = object(idx);
xi = xi(m);
yi = yi(m);
vi = vi(m);
if ~isempty(fig2)
% show histogram in figure2
figure(fig2);
histogram(vi, R(1):diff(R)/20:R(2));
figure(fig);
end
if show
% show circles around positions
plot(yi, xi, 'o', 'MarkerSize', round(150e-9/px), 'Color', [0, 0.4, 0]);
end
% update title
title(sprintf('t=%.2f, n=%d', t, length(xi)));
end
function adjust(~, event)
switch event.Key
case 'escape' % finished with this figure
uiresume();
case 'q' % quit application
fprintf('Will quit. Nothing will be saved.\n');
quit = true;
uiresume();
case 'uparrow' % less positions, higher threshold
if ~isempty(event.Modifier) && strcmp(event.Modifier{1}, 'shift')
t = min(1, t + 10 * dt);
else
t = min(1, t + dt);
end
update();
case 'downarrow' % more positions, lower threshold
if ~isempty(event.Modifier) && strcmp(event.Modifier{1}, 'shift')
t = max(dt, t - 10 * dt);
else
t = max(dt, t - dt);
end
update();
case 'v' % less saturation
C(2) = C(2) + dc;
update();
case 'b' % more saturation,
C(2) = max(C(1) + dc, C(2) - dc);
update();
case 'c' % toggle show
show = ~show;
update();
end
end
update();
fig.KeyPressFcn = @adjust;
uiwait(fig);
close(fig);
if ~isempty(fig2)
close(fig2);
end
output = struct('threshold', t, 'R', R, 'positions', [xi, yi]);
end