-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplay_atari.py
209 lines (183 loc) · 7.93 KB
/
play_atari.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import os
os.environ['SDL_AUDIODRIVER'] = 'dsp'
import sys
import gym
import random
import numpy as np
import pickle
import ray
from ray import tune
from ray.rllib.models import ModelCatalog
from ray.rllib.models.tf.tf_modelv2 import TFModelV2
from ray.rllib.models.tf.misc import normc_initializer
from ray.tune.registry import register_env, register_trainable
from ray.rllib.utils import try_import_tf
from pettingzooenv import PettingZooEnv
from pettingzoo.utils import observation_saver
from pettingzoo.atari import boxing_v0, combat_tank_v0, joust_v0, surround_v0, space_invaders_v0
from supersuit import clip_reward_v0, sticky_actions_v0, resize_v0
from supersuit import frame_skip_v0, frame_stack_v1, agent_indicator_v0
from numpy import float32
from ray.rllib.agents.dqn import DQNTrainer
from ray.rllib.agents.dqn import ApexTrainer
from ray.rllib.agents.ppo import PPOTrainer
from skimage.io import imsave
tf1, tf, tfv = try_import_tf()
class AtariModel(TFModelV2):
def __init__(self, obs_space, action_space, num_outputs, model_config,
name="atari_model"):
super(AtariModel, self).__init__(obs_space, action_space, num_outputs, model_config,
name)
inputs = tf.keras.layers.Input(shape=(84,84,4), name='observations')
inputs2 = tf.keras.layers.Input(shape=(2,), name="agent_indicator")
# Convolutions on the frames on the screen
layer1 = tf.keras.layers.Conv2D(
32,
[8, 8],
strides=(4, 4),
activation="relu",
data_format='channels_last')(inputs)
layer2 = tf.keras.layers.Conv2D(
64,
[4, 4],
strides=(2, 2),
activation="relu",
data_format='channels_last')(layer1)
layer3 = tf.keras.layers.Conv2D(
64,
[3, 3],
strides=(1, 1),
activation="relu",
data_format='channels_last')(layer2)
layer4 = tf.keras.layers.Flatten()(layer3)
concat_layer = tf.keras.layers.Concatenate()([layer4, inputs2])
layer5 = tf.keras.layers.Dense(
512,
activation="relu",
kernel_initializer=normc_initializer(1.0))(concat_layer)
action = tf.keras.layers.Dense(
num_outputs,
activation="linear",
name="actions",
kernel_initializer=normc_initializer(0.01))(layer5)
value_out = tf.keras.layers.Dense(
1,
activation=None,
name="value_out",
kernel_initializer=normc_initializer(0.01))(layer5)
self.base_model = tf.keras.Model([inputs, inputs2], [action, value_out])
self.register_variables(self.base_model.variables)
def forward(self, input_dict, state, seq_lens):
model_out, self._value_out = self.base_model([input_dict["obs"][:,:,:,0:4], input_dict["obs"][:,0,0,4:6]])
return model_out, state
def value_function(self):
return tf.reshape(self._value_out, [-1])
if __name__ == "__main__":
# RDQN - Rainbow DQN
# ADQN - Apex DQN
methods = ["ADQN", "PPO", "RDQN"]
assert len(sys.argv) == 5, "Input the learning method as the second argument"
env_name = sys.argv[1].lower()
method = sys.argv[2].upper()
method_path = sys.argv[3]
checkpoint = sys.argv[4]
assert method in methods, "Method should be one of {}".format(methods)
#checkpoint_path = "../ray_results_base/"+env_name+"/"+method.upper()+"/checkpoint_980/checkpoint-980"
#checkpoint_path = "../ray_results_base/"+env_name+"/"+method.upper()+'/APEX_boxing_0_2020-08-26_19-03-06prr7aba9'+"/checkpoint_2430/checkpoint-2430"
checkpoint_path = "{}/checkpoint_{}/checkpoint-{}".format(method_path,checkpoint,checkpoint)
if method == "RDQN":
Trainer = DQNTrainer
elif method == "ADQN":
Trainer = ApexTrainer
elif method == "PPO":
Trainer = PPOTrainer
if env_name=='boxing':
game_env = boxing_v0
elif env_name=='combat_jet':
game_env = combat_jet_v0
elif env_name=='combat_tank':
game_env = combat_tank_v0
elif env_name=='ice_hockey':
game_env = ice_hockey_v0
elif env_name=='joust':
game_env = joust_v0
elif env_name=='tennis':
env_name = tennis_v1
elif env_name=='surround':
game_env = surround_v0
elif env_name=='space_invaders':
game_env = space_invaders_v0
else:
raise TypeError('{} environment is not supported!'.format(env_name))
def env_creator(args):
env = game_env.env(obs_type='grayscale_image')
#env = clip_reward_v0(env, lower_bound=-1, upper_bound=1)
env = sticky_actions_v0(env, repeat_action_probability=0.25)
env = resize_v0(env, 84, 84)
#env = color_reduction_v0(env, mode='full')
#env = frame_skip_v0(env, 4)
env = frame_stack_v1(env, 4)
env = agent_indicator_v0(env, type_only=False)
return env
register_env(env_name, lambda config: PettingZooEnv(env_creator(config)))
test_env = PettingZooEnv(env_creator({}))
obs_space = test_env.observation_space
act_space = test_env.action_space
ModelCatalog.register_custom_model("AtariModel", AtariModel)
def gen_policy(i):
config = {
"model": {
"custom_model": "AtariModel",
},
"gamma": 0.99,
}
return (None, obs_space, act_space, config)
policies = {"policy_0": gen_policy(0)}
# for all methods
policy_ids = list(policies.keys())
# get the config file - params.pkl
config_path = os.path.dirname(checkpoint_path)
config_path = os.path.join(config_path, "../params.pkl")
with open(config_path, "rb") as f:
config = pickle.load(f)
ray.init()
RLAgent = Trainer(env=env_name, config=config)
RLAgent.restore(checkpoint_path)
# init obs, action, reward
env = env_creator(0)
total_rewards = dict(zip(env.agents, [[] for _ in range(env.num_agents)]))
for _ in range(20):
observation = env.reset()
prev_actions = env.rewards
prev_rewards = env.rewards
rewards = dict(zip(env.agents, [[0] for _ in range(env.num_agents)]))
done = False
iteration = 0
policy_agent = 'first_0'
while not done:
for _ in env.agents:
#print(observation.shape)
#imsave("./"+str(iteration)+".png",observation[:,:,0])
#env.render()
observation = env.observe(env.agent_selection)
if env.agent_selection == policy_agent:
observation = env.observe(policy_agent)
action, _, _ = RLAgent.get_policy("policy_0").compute_single_action(observation, prev_action=prev_actions[env.agent_selection], prev_reward=prev_rewards[env.agent_selection])
else:
action = env.action_spaces[policy_agent].sample() #same action space for all agents
# action, _, _ = RLAgent.get_policy("policy_0").compute_single_action(observation, prev_action=prev_actions[env.agent_selection], prev_reward=prev_rewards[env.agent_selection])
#print('Agent: {}, action: {}'.format(env.agent_selection,action))
prev_actions[env.agent_selection] = action
env.step(action, observe=False)
#print('reward: {}, done: {}'.format(env.rewards, env.dones))
prev_rewards = env.rewards
for agent in env.agents:
rewards[agent].append(prev_rewards[agent])
done = any(env.dones.values())
iteration += 1
for agent in env.agents:
total_rewards[agent].append(np.sum(rewards[agent]))
#env.close()
for agent in env.agents:
print("Agent: {}, Reward: {}".format(agent, np.mean(rewards[agent])))
print('Total reward: {}'.format(total_rewards))