-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path20180204_Evolutionary_Class_v21.py
260 lines (228 loc) · 14.9 KB
/
20180204_Evolutionary_Class_v21.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
'''
Description and Disclaimer: ... to be written :-P
'''
import numpy as np
import pandas as pd
import random
class creature:
'''Creature class which contains a fixed amout of attributes which are 'ID','fitness','generation','mother_ID' and 'father_ID'.
Also holds an arbitrary amount of chormosomes which are a dictionary like {'name':brutus,'age':5,'legs':4,...}
Has some helper-functions to update or load stats'''
def __init__(self,ID_int,chromes,fitness = 0,birth_generation = 0,mother='',father='',extinct = False):
'''Function to initialize the Creature and set parameters
INPUT ID_int: Accepts an integer as creatures ID, should be unique within a population
INPUT chromes: Accepts a dictionary of arbitrary length like {'name':brutus,'age':5,'legs':4,...}, the governing population class needs to make sure each creature within the population has the same attributes'''
self.flag_not_set = ''
self.id = int(ID_int)
self.fitness = fitness
self.birth_generation = birth_generation
self.extinct_generation = self.flag_not_set
self.mother = mother
self.father = father
self.chromes = chromes
self.extinct = extinct
self.fitness_evaluated = False
def get_id(self):
'''Get function which returns ID as integer.'''
return self.id
def get_fitness(self):
'''Get function which returns fitness as integer.'''
return self.fitness
def get_all_parameters(self):
'''Get function which returns a pandas-DataFrame with parameters and chromes as column-headers and values as first row.'''
fixed_parameters = pd.DataFrame.from_dict({'id':[self.id],'fitness':[self.fitness],'fitness_evaluated':[self.fitness_evaluated],'birth_generation':[self.birth_generation],'extinct_generation':[self.extinct_generation],'mother':[self.mother],'father':[self.father],'extinct':[self.extinct]})
variable_parameters = pd.DataFrame.from_dict({a:[b] for a,b in self.chromes.items()})
df = fixed_parameters.join(variable_parameters)
df= df.set_index('id')
return df
def get_chromes(self):
'''Get function which returns the creatures chromes as a dictionary.'''
return self.chromes
def set_fitness(self,fitness_int,reset_fitness_evaluated=False):
'''INPUT fitness_int: Accepts an non negative integer as new fitness value.
Additionally sets the fitness_evaluated flag to True, first time the Fitness is evaluated.
This can be reversed with the functions optional input-flag reset_fitness_evaluated=True'''
self.fitness = max(0,int(fitness_int))
if reset_fitness_evaluated:
self.fitness_evaluated = False
else:
self.fitness_evaluated = True
def set_creature_extinct(self,extinct_generation,inverse=False):
'''Function which accepts the current generation as integer, to set the creatures state-flag to extinct. To distinguishe alive from dead creatures.'''
self.extinct = True
self.extinct_generation = int(extinct_generation)
if inverse:
self.extinct = False
self.extinct_generation = self.flag_not_set
class population:
def __init__(self,ID,population_size_int,chromosome_template,mutation_rate = 0.05):
self.id = ID
self.creature_id_counter = -1
self.generation = 0
self.population_size = int(population_size_int)
self.chromosome_template = chromosome_template
self.mutation_rate = mutation_rate
self.avaliable_cross_over_methods = {'SPCO':'Single point cross over at random point in genomes','H2H':'Half and half, first genome of mother, second of father, third of mother and so on.'}
self.cross_over_method = 'SPCO'
self.extinct_selection_method = 'random'
template_creature = creature(-1,{key:0 for key,value in chromosome_template.items()})
template_creature = template_creature.get_all_parameters()
self.creature_attribute_list = template_creature.drop(template_creature.index)
self.creatures = []
self.flag_not_set = ''
def initialize_make_population(self):
'''Function without input parameter which initially generates the generation 0 population from the chromosome template. No return values, just internals for the class.'''
for idx in range(len(self.creatures),self.population_size):
chromes = {a:random.uniform(b[0],b[1]) for a,b in self.chromosome_template.items()}
ID = self.generate_next_creature_id()
next_creature = creature(ID,chromes,father=None,mother=None)
self.append_creature_to_population(next_creature)
def initialize_fill_population(self):
'''Function wich fills a population with random creatures up to the specified population sice, asuming that some "handcrafted" creatures were inserted into the population already.'''
self.creature_attribute_list = self.creature_attribute_list.drop(self.creature_attribute_list.index) #Drops the current creature_attribute_list
self.creatures = [] #Drops all current existing creatures
for idx in range(self.population_size):
chromes = {a:random.uniform(b[0],b[1]) for a,b in self.chromosome_template.items()}
ID = self.generate_next_creature_id()
next_creature = creature(ID,chromes,father=None,mother=None)
self.append_creature_to_population(next_creature)
def append_creature_to_population(self,creature_to_append):
'''Accepts a creature-object and appends it to the population-object. No return value.'''
self.creatures.append(creature_to_append)
self.creature_attribute_list = self.creature_attribute_list.append(creature_to_append.get_all_parameters())
def generate_next_creature_id(self):
'''Helperfunction that increases a counter and '''
self.creature_id_counter +=1
return self.creature_id_counter
def increment_generation(self):
self.generation +=1
def get_all_creature_attributes(self,only_alive=False):
'''Returns a pandas.DataFrame with all the information of the population.
Accepts optional \'only_alive\'-Flag wich can be se to True if you are only interested in a list of currently alive creatures.'''
if only_alive:
return self.creature_attribute_list[self.creature_attribute_list['extinct']==False]
else:
return self.creature_attribute_list
def get_best_creature_attributes(self,attribute = 'fitness',only_id = False,only_alive=False):
'''Accepts optional attribute as string which must be a creatures parameter like 'fitness' or a chromosome-name.'''
if only_alive: choice = self.creature_attribute_list[self.creature_attribute_list['extinct']==False]
else: choice = self.creature_attribute_list
idx = choice[str(attribute)].idxmax()
if only_id:
return idx
else:
return self.creature_attribute_list.iloc[idx]
def get_worst_creature_attributes(self,attribute = 'fitness',only_id = False,only_alive=False):
'''Accepts optional attribute as string which must be a creatures parameter like 'fitness' or a chromosome-name.'''
if only_alive: choice = self.creature_attribute_list[self.creature_attribute_list['extinct']==False]
else: choice = self.creature_attribute_list
idx = choice[str(attribute)].idxmin()
if only_id:
return idx
else:
return self.creature_attribute_list.iloc[idx]
def get_parent_id(self, list_of_exclusions = ''):
'''Accepts optional IDs that shal be excluded as list of integers.'''
creature_pool = self.creature_attribute_list
if len(list_of_exclusions) >0:
creature_pool = creature_pool.drop(list_of_exclusions)
return np.random.choice(creature_pool.index.values.tolist(),1,creature_pool['fitness'].tolist())[0]
def get_creature_by_id(self,creature_id):
'''Accepts a creature ID as integer and returns the creature-object from the population.'''
return self.creatures[int(creature_id)]
def set_mutation_rate(self,mutation_rate):
'''Accepts a new mutation rate as float number for the entire population.'''
self.mutation_rate = float(mutation_rate)
def set_extinct_selection_method(self,extinct_selection_method):
'''Accepts a new selection method for the extinct creature as string, if this is not defined in the population-class, a default method will be used.'''
self.extinct_selection_method = str(extinct_selection_method)
def set_crossover_method(self,cross_over_method_as_string):
'''Accepts a new cross over method as string, if this is not defined in the population-class, a default method will be used.'''
self.cross_over_method = str(cross_over_method_as_string)
def get_population_metadata(self):
'''No input required, returns a dictionary with primary parameters of the population.'''
return {'Population name':self.id,'Population size':self.population_size,'Generated Creatures':self.creature_id_counter+1,'Current generation':self.generation,'Mutation rate':self.mutation_rate,'Best creature fitness':self.get_best_creature_attributes()['fitness'],'Best creature ID':self.get_best_creature_attributes(only_id=True)}
def generate_child(self,mother_id_int,father_id_int):
'''Accepts two creature IDs as integer which will be mother and father.
Returns a new creature object.'''
ID = self.generate_next_creature_id()
new_keys, new_params = [],[]
#Get all relevant set of chromes
mother_chromes = self.creatures[int(mother_id_int)].get_chromes()
father_chromes = self.creatures[int(father_id_int)].get_chromes()
random_chromes = {a:random.uniform(b[0],b[1]) for a,b in self.chromosome_template.items()}
#Interlace the chromes with application of mutation
counter = 0
for key,_ in random_chromes.items():
counter+=1
if np.random.rand()<=self.mutation_rate:
new_params.append(random_chromes[key])
elif counter%2==0:
new_params.append(mother_chromes[key])
else:
new_params.append(father_chromes[key])
new_keys.append(key)
#Generate child from new chromes
new_chromes = dict(zip(new_keys,new_params))
new_creature = creature(ID,new_chromes,birth_generation=self.generation,mother=mother_id_int,father=father_id_int)
return new_creature
def set_creature_fitness(self,creature_id_int,fitness_int):
'''Accepts an creature ID as integer aswell as a new fitness-value as integer (non-negative) and updates the creature. No return value.'''
idx = int(creature_id_int)
self.creatures[idx].set_fitness(fitness_int)
self.creature_attribute_list.at[idx,'fitness']=fitness_int
self.creature_attribute_list.at[idx,'fitness_evaluated']=True
def set_creature_extinct(self,creature_id_int,inverse=False):
'''Accepts an creature ID as integer aswell as a new fitness-value as integer (non-negative) and updates the creature. No return value.'''
idx = int(creature_id_int)
if inverse:
self.creatures[idx].set_creature_extinct(self.generation,inverse=True)
self.creature_attribute_list.at[idx,'extinct']=False
self.creature_attribute_list.at[idx,'extinct_generation']=self.flag_not_set
else:
self.creatures[idx].set_creature_extinct(self.generation)
self.creature_attribute_list.at[idx,'extinct']=True
self.creature_attribute_list.at[idx,'extinct_generation']=self.generation
def get_list_of_creatures_alive(self):
'''Function that returns a list with the indexes of currently alive creatures in the population.'''
return self.creature_attribute_list[self.creature_attribute_list['extinct']==False].index.values
def move_to_next_generation(self,number_of_children_to_generate_int=1):
'''Accepts optionaly a number of children to generate per generation.'''
self.generation+=1
new_children = []
for _ in range(number_of_children_to_generate_int):
mother_id = self.get_parent_id()
father_id = self.get_parent_id([mother_id])
if self.extinct_selection_method == 'worst':
extinct_id = self.get_worst_creature_attributes(only_id=True,only_alive=True)
elif self.extinct_selection_method == 'random':
else:
extinct_id = random.choice(self.get_list_of_creatures_alive())
self.set_creature_extinct(extinct_id)
new_children.append(self.generate_child(mother_id,father_id))
for child in new_children:
self.append_creature_to_population(child)
def get_next_generations_children(self):
'''Function that returns a DataFrame with the information of the creatures which have recentily been generated.'''
return self.get_all_creature_attributes()[self.get_all_creature_attributes()['birth_generation']==self.generation]
def get_creatures_without_fitness_rating(self):
'''Function that returns a DataFrame with the information of the creatures which have the fitness_evaluated flat set to False.'''
return self.get_all_creature_attributes()[self.get_all_creature_attributes()['fitness_evaluated']==False]
def get_best_and_average_population_fitness(self):
'''Function that returns a tupel with (best_creature_fitness, average_population_fitness).'''
return (self.get_best_creature_attributes(only_alive=True)['fitness'],self.get_all_creature_attributes(only_alive=True)['fitness'].mean())
def dump_population_to_csv(self,only_alive=False,csv_separator=',',csv_decimal='.',csv_german=False):
'''Function that generates a .csv-file from the current population-DataFrame (not the actual creature-objects).
Will prompt where the file was written.'''
from datetime import datetime
import os
path = os.getcwd()
timestamp = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
file_name = timestamp+'_Genetic_simulation_of_{}.csv'.format(self.id)
entire_path = path + '\\' +file_name
if bool(csv_german):
csv_separator=';'
csv_decimal=','
with open(entire_path,'w') as f:
self.get_all_creature_attributes(only_alive=only_alive).to_csv(f,sep=csv_separator,decimal = csv_decimal,index=True, header=True,encoding='utf-8')
print('The file \'{}\' was generated from the current population and safed to location \'{}\'.'.format(file_name,entire_path))