-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathdispmap_ncc.m
278 lines (232 loc) · 8.34 KB
/
dispmap_ncc.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
% Johannes Ulén and Carl Olsson 2013
%
% Example on how to create a disparity map
% Inherit all functinally except the intilization and unary cost from dispmap_super
classdef dispmap_ncc < dispmap_super
properties (SetAccess = protected)
ncc;
disparities; % Disparities to sample NCC at
unary_weight;
smooth;
tol;
end
methods
function self = dispmap_ncc(images,disparities, kernel, unary_weight,tol)
% Superclass constructor
self = self@dispmap_super(images, kernel);
self.disparities = disparities;
self.unary_weight = unary_weight;
self.smoothness_kernel = kernel;
self.tol = tol;
% Special for normalized cross correlation
compute_ncc(self,2);
% Intitlize a solution which is based on the NCC volume
init_solution(self);
end
function set.tol(self, tol)
if (tol < 0)
error('Tolerance weight must be positive');
end
self.tol = tol;
update_energy(self);
end
function set.unary_weight(self, weight)
if (weight < 0)
error('Unary weight must be positive');
end
self.unary_weight = weight;
update_energy(self);
end
function proposal = generate_new_plane_RANSAC(self, x, y, r)
% Generate a plane by samlping the NCC volume around x,y
points = get_points(self);
best_disp = best_disp_from_ncc(self);
% Find points within raidus r
dist = points - ...
[repmat(x,[1 size(points,2)]); repmat(y,[1 size(points,2)])];
ids = sqrt(dist(1,:).^2 + dist(2,:).^2) < r;
% Approximated from NCC sampling
points3D = [points(:,ids); best_disp(ids)];
% Fit a plane to points inside radius r
p = fit_plane_to_points(self, points3D);
proposal =repmat(p, [1 size(self.assignment,2)]);
end
function p = fit_plane_to_points(self, points)
c= mean(points,2);
n = size(points,2);
cost_func = -(points-repmat(c,[1 n]))';
p = zeros(4,1);
if (self.smoothness_kernel == 1)
w = ones(size(cost_func,1),1);
% Iterative reweighted least squares
% To calculate normal direction of plane
for irls_iteration = 1:20
w = repmat(w,[1 3]);
% Solve using SVD
[~,~,V] = svd(w.*cost_func,'econ');
p(1:3) = V(:,end);
w = sqrt(abs(cost_func*V(:,end)));
end
elseif (self.smoothness_kernel == 2)
[~,~,V] = svd(cost_func,'econ');
p(1:3) = V(:,end);
end
p(4) = -(p(1:3)'*mean(points(1:3,:),2));
p = p/p(3);
end
function display(self)
fprintf('Disparity map with normalized cross correlation unary term \n');
fprintf('Disparity levels %d in range [%g, %g]. \n', numel(self.disparities), max(self.disparities), min(self.disparities));
display@dispmap_super(self);
fprintf('Unary weight : %g \n', self.unary_weight);
fprintf('Tolerance : %g \n', self.tol);
end
function restart(self)
% Reset to inital solution
init_solution(self);
end
end
methods (Access = protected)
%% NCC methods
function U = unary_cost(self, assignment)
disps = disparitymap_from_assignment(self,assignment);
%sample ncc at depths
nccs = sample_ncc_from_disp(self, disps);
% Unary cost
U = self.unary_weight*(1-nccs(:));
end
function compute_ncc(self, patchsize)
% Readability
im0 = self.images{1};
im1 = self.images{2};
d = self.disparities;
ncc = zeros(size(im0,1),size(im0,2),length(d));
%compute ncc-mean and ncc-norm of right image
meanpatch = ones(2*patchsize+1)./sum(sum(ones(2*patchsize+1)))/3;
patch = ones(2*patchsize+1);
Rright = double(im0(:,:,1));
Gright = double(im0(:,:,2));
Bright = double(im0(:,:,3));
mean_right = conv2(Rright,meanpatch,'same')+conv2(Gright,meanpatch,'same')+conv2(Bright,meanpatch,'same');
term1R = conv2(Rright.^2,patch,'same');
term1G = conv2(Gright.^2,patch,'same');
term1B = conv2(Bright.^2,patch,'same');
term2R = mean_right.*conv2(Rright,patch,'same');
term2G = mean_right.*conv2(Gright,patch,'same');
term2B = mean_right.*conv2(Bright,patch,'same');
term4 = sum(patch(:))*3*mean_right.^2;
norm_right = sqrt(term1R+term1G+term1B-2*(term2R+term2G+term2B)+term4);
parfor i = 1:length(d);
% Move image according to disparit d(i);
bnd_im = zeros(self.sz);
bnd_im(:,round(d(i)+1):end) = 1;
y_span = ceil(d(i)+1):self.sz(2);
[X,Y] = meshgrid(linspace(1,self.sz(2)-d(i),numel(y_span)), ...
1:self.sz(1));
imtr = zeros([self.sz 3]);
for dim = 1:3
imtr(:,y_span,dim) = interp2(im1(:,:,dim),X,Y);
end
Rtr = double(imtr(:,:,1));
Gtr = double(imtr(:,:,2));
Btr = double(imtr(:,:,3));
mean_tr = conv2(Rtr,meanpatch,'same')+conv2(Gtr,meanpatch,'same')+conv2(Btr,meanpatch,'same');
%Compute ncc-mean and ncc- norm of transformed-left image
term1R = conv2(Rtr.^2,patch,'same');
term1G = conv2(Gtr.^2,patch,'same');
term1B = conv2(Btr.^2,patch,'same');
term2R = mean_tr.*conv2(Rtr,patch,'same');
term2G = mean_tr.*conv2(Gtr,patch,'same');
term2B = mean_tr.*conv2(Btr,patch,'same');
term4 = sum(patch(:))*3*mean_tr.^2;
norm_tr = sqrt(term1R+term1G+term1B-2*(term2R+term2G+term2B)+term4);
%Compute ncc
term1R = conv2(Rright.*Rtr,patch,'same');
term1G = conv2(Gright.*Gtr,patch,'same');
term1B = conv2(Bright.*Btr,patch,'same');
term2R = mean_right.*conv2(Rtr,patch,'same');
term2G = mean_right.*conv2(Gtr,patch,'same');
term2B = mean_right.*conv2(Btr,patch,'same');
term3R = mean_tr.*conv2(Rright,patch,'same');
term3G = mean_tr.*conv2(Gright,patch,'same');
term3B = mean_tr.*conv2(Bright,patch,'same');
term4 = sum(patch(:))*3*mean_tr.*mean_right;
ncci = term1R+term1G+term1B-(term2R+term2G+term2B)-(term3R+term3G+term3B)+term4;
ncci = ncci./norm_right./norm_tr;
ncci(~isfinite(ncci)) = 0;
ncci(~(bnd_im>=1-1e-8)) = 0;
ncc(:,:,i) = real(ncci);
end
% parfor does not allow to write to self.ncc directly
% Data is not copied with this operation
self.ncc = ncc;
end
function init_solution(self)
best_disp = best_disp_from_ncc(self);
assignment = zeros(4, prod(self.sz(1:2)) );
assignment(3,:) = 1;
assignment(4,:) = -best_disp(:);
self.assignment = assignment;
end
function best_disp = best_disp_from_ncc(self)
% Best assigments based on ncc volume
% all normal direction initilized to be fronto-parallel
d = self.disparities;
[y2,t2] = max(self.ncc,[],3);
ncc_size = size(self.ncc);
okdepth = (t2 < ncc_size(3) & t2 > 1);
[r,p,q, d2] = interpolate_ncc(self, t2, y2, okdepth);
% local maxima
best_disp = -p./r/2;
best_disp(~okdepth) = d2(~okdepth);
end
function nccs = sample_ncc_from_disp(self, new_pixel_disps)
largeval = 1e6;
new_pixel_disps = reshape(new_pixel_disps,self.sz(1:2));
d = self.disparities;
closest_depth_ind = ones(size(self.ncc(:,:,1)));
smallest_dist = abs(new_pixel_disps-d(1));
y2 = ones(size(self.ncc(:,:,1)));
for i = 1:length(d);
new_dists = abs(new_pixel_disps - d(i));
closest_depth_ind(new_dists <= smallest_dist) = i;
ncci = self.ncc(:,:,i);
y2(new_dists <= smallest_dist) = ncci(new_dists <= smallest_dist);
smallest_dist(new_dists <= smallest_dist) = new_dists(new_dists <= smallest_dist);
end
t2 = closest_depth_ind;
okdepth = (t2 < size(self.ncc,3) & t2 > 1);
good_disp = new_pixel_disps <= max(d) & new_pixel_disps >= min(d);
[r,p,q] = interpolate_ncc(self, t2, y2, okdepth);
nccs = r.*new_pixel_disps.^2+p.*new_pixel_disps+q;
ncci = self.ncc(:,:,1);
nccs(t2 == 1) = ncci(t2 == 1);
ncci = self.ncc(:,:,end);
nccs(t2 == length(d)) = ncci(t2 == length(d));
nccs(~good_disp) = -largeval;
end
function [r,p,q, d2] = interpolate_ncc(self, t2, y2, okdepth)
d2 = self.disparities(t2);
t1 = zeros(size(t2));
t1(okdepth) = t2(okdepth)-1;
t1(~okdepth) = t2(~okdepth);
d1 = self.disparities(t1);
t3 = zeros(size(t2));
t3(okdepth) = t2(okdepth)+1;
t3(~okdepth) = t2(~okdepth);
d3 = self.disparities(t3);
% sample at t1 and t2
[col,row] = meshgrid(1:size(self.ncc,2), 1:size(self.ncc,1));
y1 = self.ncc(row+(col-1)*size(self.ncc,1)+(t1-1).*size(self.ncc,1)*size(self.ncc,2));
y3 = self.ncc(row+(col-1)*size(self.ncc,1)+(t3-1).*size(self.ncc,1)*size(self.ncc,2));
% local minimum
a = y1./(d1-d2)./(d1-d3);
b = y2./(d2-d1)./(d2-d3);
c = y3./(d3-d1)./(d3-d2);
%polynom: r*d^2+p*d+q
r = a+b+c;
p = -(a.*(d2+d3)+b.*(d1+d3)+c.*(d1+d2));
q = a.*d2.*d3 + b.*d1.*d3 + c.*d1.*d2;
end
end
end