-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathadd_hat.py
147 lines (110 loc) · 5.06 KB
/
add_hat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import numpy as np
import cv2
import dlib
# 给img中的人头像加上圣诞帽,人脸最好为正脸
def add_hat(img,hat_img):
# 分离rgba通道,合成rgb三通道帽子图,a通道后面做mask用
r,g,b,a = cv2.split(hat_img)
rgb_hat = cv2.merge((r,g,b))
cv2.imwrite("hat_alpha.jpg",a)
# ------------------------- 用dlib的人脸检测代替OpenCV的人脸检测-----------------------
# # 灰度变换
# gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# # 用opencv自带的人脸检测器检测人脸
# face_cascade = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")
# faces = face_cascade.detectMultiScale(gray,1.05,3,cv2.CASCADE_SCALE_IMAGE,(50,50))
# ------------------------- 用dlib的人脸检测代替OpenCV的人脸检测-----------------------
# dlib人脸关键点检测器
predictor_path = "shape_predictor_5_face_landmarks.dat"
predictor = dlib.shape_predictor(predictor_path)
# dlib正脸检测器
detector = dlib.get_frontal_face_detector()
# 正脸检测
dets = detector(img, 1)
# 如果检测到人脸
if len(dets)>0:
for d in dets:
x,y,w,h = d.left(),d.top(), d.right()-d.left(), d.bottom()-d.top()
# x,y,w,h = faceRect
# cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2,8,0)
# 关键点检测,5个关键点
shape = predictor(img, d)
# for point in shape.parts():
# cv2.circle(img,(point.x,point.y),3,color=(0,255,0))
# cv2.imshow("image",img)
# cv2.waitKey()
# 选取左右眼眼角的点
point1 = shape.part(0)
point2 = shape.part(2)
# 求两点中心
eyes_center = ((point1.x+point2.x)//2,(point1.y+point2.y)//2)
# cv2.circle(img,eyes_center,3,color=(0,255,0))
# cv2.imshow("image",img)
# cv2.waitKey()
# 根据人脸大小调整帽子大小
factor = 1.5
resized_hat_h = int(round(rgb_hat.shape[0]*w/rgb_hat.shape[1]*factor))
resized_hat_w = int(round(rgb_hat.shape[1]*w/rgb_hat.shape[1]*factor))
if resized_hat_h > y:
resized_hat_h = y-1
# 根据人脸大小调整帽子大小
resized_hat = cv2.resize(rgb_hat,(resized_hat_w,resized_hat_h))
# 用alpha通道作为mask
mask = cv2.resize(a,(resized_hat_w,resized_hat_h))
mask_inv = cv2.bitwise_not(mask)
# 帽子相对与人脸框上线的偏移量
dh = 0
dw = 0
# 原图ROI
# bg_roi = img[y+dh-resized_hat_h:y+dh, x+dw:x+dw+resized_hat_w]
bg_roi = img[y+dh-resized_hat_h:y+dh,(eyes_center[0]-resized_hat_w//3):(eyes_center[0]+resized_hat_w//3*2)]
# 原图ROI中提取放帽子的区域
bg_roi = bg_roi.astype(float)
mask_inv = cv2.merge((mask_inv,mask_inv,mask_inv))
alpha = mask_inv.astype(float)/255
# 相乘之前保证两者大小一致(可能会由于四舍五入原因不一致)
alpha = cv2.resize(alpha,(bg_roi.shape[1],bg_roi.shape[0]))
# print("alpha size: ",alpha.shape)
# print("bg_roi size: ",bg_roi.shape)
bg = cv2.multiply(alpha, bg_roi)
bg = bg.astype('uint8')
cv2.imwrite("bg.jpg",bg)
# cv2.imshow("image",img)
# cv2.waitKey()
# 提取帽子区域
hat = cv2.bitwise_and(resized_hat,resized_hat,mask = mask)
cv2.imwrite("hat.jpg",hat)
# cv2.imshow("hat",hat)
# cv2.imshow("bg",bg)
# print("bg size: ",bg.shape)
# print("hat size: ",hat.shape)
# 相加之前保证两者大小一致(可能会由于四舍五入原因不一致)
hat = cv2.resize(hat,(bg_roi.shape[1],bg_roi.shape[0]))
# 两个ROI区域相加
add_hat = cv2.add(bg,hat)
# cv2.imshow("add_hat",add_hat)
# 把添加好帽子的区域放回原图
img[y+dh-resized_hat_h:y+dh,(eyes_center[0]-resized_hat_w//3):(eyes_center[0]+resized_hat_w//3*2)] = add_hat
# 展示效果
# cv2.imshow("img",img )
# cv2.waitKey(0)
return img
# 读取帽子图,第二个参数-1表示读取为rgba通道,否则为rgb通道
hat_img = cv2.imread("hat2.png",-1)
# 读取头像图
img = cv2.imread("test.jpg")
output = add_hat(img,hat_img)
# 展示效果
cv2.imshow("output",output )
cv2.waitKey(0)
cv2.imwrite("output.jpg",output)
# import glob as gb
# img_path = gb.glob("./images/*.jpg")
# for path in img_path:
# img = cv2.imread(path)
# # 添加帽子
# output = add_hat(img,hat_img)
# # 展示效果
# cv2.imshow("output",output )
# cv2.waitKey(0)
cv2.destroyAllWindows()