-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
56 lines (40 loc) · 1.35 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from jax import grad, jit, random, vmap
import jax.numpy as np
from jax.flatten_util import ravel_pytree
from tqdm import tqdm
@jit
def sigmoid(x):
return 1 / (1 + np.exp(-x))
#TODO remove hardcoded 10
@jit
def to_one_hot(y):
return np.eye(10)[y]
@jit
def cross_entropy(y, yhat):
y = to_one_hot(y)
y = y.reshape(1, y.shape[0], y.shape[1])
return -np.mean(np.sum(y * yhat, axis=2))
def make_model(model, input_shape, num_particles):
init_random_params, predict = model
keys = random.split(random.PRNGKey(0), num_particles)
params_ = []
for i in range(num_particles):
out_shape, params = init_random_params(rng=keys[i], input_shape=input_shape)
params_.append(params)
_, unflattener = ravel_pytree(params_[0])
thetas = np.array([
np.array(ravel_pytree(params_[i])[0]) for i in range(num_particles)
])
def predict_one(theta,x):
rng_key=random.PRNGKey(0)
theta_flat = unflattener(theta)
return predict(theta_flat, x, rng=rng_key)
predict_batch = jit(vmap(predict_one,(0,None),0))
return thetas, predict_batch
def tqdm_(loader):
return enumerate(tqdm(loader, ascii=True, leave=False))
class SGD:
def __init__(self, learning_rate):
self.learning_rate = learning_rate
def update(self, theta, grad):
return theta - self.learning_rate * grad