Skip to content

Latest commit

 

History

History
executable file
·
136 lines (117 loc) · 4.18 KB

README.md

File metadata and controls

executable file
·
136 lines (117 loc) · 4.18 KB

Connector families Build Status

This project encodes in Scala how to specify and compose families of connectors, mixing the fields of exogenous coordination languages and software product lines.

We view connectors as black boxes with interfaces: a left and a right interface, each with a sequence of input and output ports. Connectors can be composed in parallel (+) or in sequence (;). When composing connectors only the order of the ports matter, not their name.

A connector family wraps a connector parameterised by some arguments together with a feature model and a configuration that relates these two. This feature model allows a high level specification that controls the arguments of the parameterised connector.

Examples

Examples of success and failure of trying to type families of connectors can be found below.

import connectorFamily.connector.Examples._
import connectorFamily.connector.PP._

typeAndPrint(lossy & fifo)
typeAndPrint(lossy*id & xrd)
typeAndPrint(swap & sdrain)
typeAndPrintWithErrors(lossy.inv*id & sync)

The code above produces the following result. When a connector type checks, the function prints the connector representation, its inferred type and constraints by the constraint-based type checker, the substitutions resulting from solving the constraints, and the type after applying the substitution.

lossy ; fifo
 : (x1a,x2b)
 | (1,1) == (x1a,x1b)
 | (1,1) == (x2a,x2b)
 | x1b == x2a
 + x1a -> 1
 + x1b -> 1
 + x2a -> 1
 + x2b -> 1
 : (1,1)
lossy * id ; xrd
 : (x1a,x2b)
 | (1,1) * (1,1) == (x1a,x1b)
 | (2,1) == (x2a,x2b)
 | x1b == x2a
 + x1a -> 2
 + x1b -> 2
 + x2a -> 2
 + x2b -> 1
 : (2,1)
swap ; sdrain
 : (x1a,x2b)
 | (2,2) == (x1a,x1b)
 | (2,ø) == (x2a,x2b)
 | x1b == x2a
 + x1a -> 2
 + x1b -> 2
 + x2a -> 2
 + x2b -> ø
 : (2,ø)
Failed to typecheck lossy' * id ; sync.
Failed to unify interfaces.
unifying: [-1,1] == 1
unifying: 1 == x2b
unifying: 1 == x2b
unifying: 1 == x2a
unifying: 1 == x2a
unifying: (1,1) == (x2a,x2b)
unifying: [-1,1] == x1b
unifying: [-1,1] == x1a
unifying: (-1,-1) * (1,1) == (x1a,x1b)
 : (x1a,x2b)
 | (-1,-1) * (1,1) == (x1a,x1b)
 | (1,1) == (x2a,x2b)
 | x1b == x2a

A more complex example of typing a parameterised connector is presented below.

val nat = new VVar("nat")
val X = new IVar("X")

val iF = IIndNat(Interface(1)
                ,new VVar("x")
                ,X,Interface(1,X)
                ,nat)
val tF = IPair(iF,iF)

val y = new CVar("y")    
val seqFifoAux = IndNat(nat, tF, fifo , y, fifo * y , nat)
val seqFifo    = LambdaV(nat, VNat, seqFifoAux)

typeAndPrint(seqFifo)

Its inferred type is the following.

 \nat:Nat .
  IndN(nat.(IndN(1,x.X.[1,X],nat),IndN(1,x.X.[1,X],nat))
      ,fifo
      ,nat.y.fifo * y
      ,nat)
 : Pi[nat:VNat] (IndN(1,x.X.[1,X],nat),IndN(1,x.X.[1,X],nat))
 | (1,1) == (IndN(1,x.X.[1,X],0),IndN(1,x.X.[1,X],0))
 | (1,1) * (IndN(1,x.X.[1,X],nat),IndN(1,x.X.[1,X],nat)) == 
            (IndN(1,x.X.[1,X],nat+1),IndN(1,x.X.[1,X],nat+1))
 : Pi[nat:VNat] (IndN(1,x.X.[1,X],nat),IndN(1,x.X.[1,X],nat))

By swapping the order of composition of the inductive step we obtain an ill-typed connector. That is, if we define:

val seqFifoAux = IndNat(nat, tF, fifo , y, y * fifo, nat)
val seqFifo    = LambdaV(nat, VNat, seqFifoAux)

When typing it we obtain the following error.

Failed to typecheck
\nat:Nat .
  IndN(nat.(IndN(1,x.X.[1,X],nat),IndN(1,x.X.[1,X],nat))
      ,fifo,nat.y.y * fifo,nat).
Failed to unify constraints
unifying: IndN(1,x.X.[1,X],nat) == 1
unifying: [IndN(1,x.X.[1,X],nat),1] == [1,IndN(1,x.X.[1,X],nat)]
unifying: (IndN(1,x.X.[1,X],nat),IndN(1,x.X.[1,X],nat)) * (1,1) ==
          (IndN(1,x.X.[1,X],nat+1),IndN(1,x.X.[1,X],nat+1))
unifying: 1 == 1
unifying: 1 == 1
unifying: 1 == 1
unifying: 1 == 1
unifying: (1,1) == (IndN(1,x.X.[1,X],0),IndN(1,x.X.[1,X],0))
 : Pi[nat:VNat] (IndN(1,x.X.[1,X],nat),IndN(1,x.X.[1,X],nat))
 | (1,1) == (IndN(1,x.X.[1,X],0),IndN(1,x.X.[1,X],0))
 | (IndN(1,x.X.[1,X],nat),IndN(1,x.X.[1,X],nat)) * (1,1) ==
   (IndN(1,x.X.[1,X],nat+1),IndN(1,x.X.[1,X],nat+1))