forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNamedTensor.cpp
153 lines (131 loc) · 5 KB
/
NamedTensor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#define TORCH_ASSERT_NO_OPERATORS
#include <ATen/core/NamedTensor.h>
#include <ATen/core/TensorBase.h>
namespace at {
thread_local bool NamesMode_enabled = true;
bool NamesMode::is_enabled() {
return NamesMode_enabled;
}
void NamesMode::set_enabled(bool enabled) {
NamesMode_enabled = enabled;
c10::impl::tls_set_dispatch_key_excluded(DispatchKey::Named, !enabled);
}
const TensorBase& internal_set_names_inplace(const TensorBase& tensor, optional<DimnameList> names) {
impl::internal_set_names_inplace(tensor.unsafeGetTensorImpl(), names, /*validate_names=*/true);
return tensor;
}
const TensorBase& internal_set_names_inplace(const TensorBase& tensor, std::vector<Dimname>&& names, bool validate_names) {
impl::internal_set_names_inplace(tensor.unsafeGetTensorImpl(), std::move(names), validate_names);
return tensor;
}
DimnameList default_names(size_t len) {
static std::vector<Dimname> all_unnamed(kMaxNamedTensorDim, Dimname::wildcard());
TORCH_INTERNAL_ASSERT(
len <= kMaxNamedTensorDim,
"Only tensors with up to ", kMaxNamedTensorDim, " are supported.");
return DimnameList(&all_unnamed.front(), len);
}
static void check_unique_names(DimnameList names) {
// Strategy: Compare each element with the ones that come after it.
// Although this is O(N^2), in practice N is small (no more than 25).
for (auto it = names.begin(); it != names.end(); ++it) {
if (it->isWildcard()) continue;
auto dup = std::find(it + 1, names.end(), *it);
while (dup != names.end()) {
TORCH_CHECK(false,
"Cannot construct a tensor with duplicate names. Got names: ",
names, ".");
}
}
}
void check_names_valid_for(const TensorBase& tensor, DimnameList names) {
return impl::check_names_valid_for(tensor.unsafeGetTensorImpl(), names);
}
void check_names_valid_for(size_t tensor_dim, DimnameList names) {
TORCH_CHECK(
tensor_dim <= kMaxNamedTensorDim,
"Named tensors only support up to ", kMaxNamedTensorDim, " dims: "
"Attempted to create a tensor with dim ", tensor_dim, " with names ", names);
TORCH_CHECK(tensor_dim == names.size(),
"Number of names (", names.size(), ") and "
"number of dimensions in tensor (", tensor_dim, ") ",
"do not match. Attempted to create a tensor with names ", names);
check_unique_names(names);
}
namespace impl {
static NamedTensorMeta* get_named_tensor_meta(TensorImpl* impl) {
if (!NamesMode::is_enabled()) {
return nullptr;
}
return static_cast<NamedTensorMeta*>(impl->named_tensor_meta());
}
static const NamedTensorMeta* get_named_tensor_meta(const TensorImpl* impl) {
if (!NamesMode::is_enabled()) {
return nullptr;
}
return static_cast<const NamedTensorMeta*>(impl->named_tensor_meta());
}
void check_names_valid_for(TensorImpl* impl, DimnameList names) {
check_names_valid_for(impl->dim(), names);
}
void internal_set_names_inplace(TensorImpl* impl, optional<DimnameList> names, bool validate_names) {
TORCH_CHECK(impl->layout() == Layout::Strided,
"NYI: named tensors only support strided layout");
TORCH_CHECK(impl->device().is_cpu() || impl->device().is_cuda() || impl->device().is_xpu() || impl->device().is_privateuseone(),
"NYI: named tensors only support CPU, CUDA, XPU or ", c10::get_privateuse1_backend(), " tensors.");
if (!names) {
impl->set_named_tensor_meta(nullptr);
return;
}
if (validate_names) {
check_names_valid_for(impl, *names);
}
// Do this after validation!
if (std::all_of(names->begin(), names->end(), [](const Dimname& n) { return n.isWildcard(); })) {
impl->set_named_tensor_meta(nullptr);
return;
}
auto* meta = get_named_tensor_meta(impl);
if (meta == nullptr) {
// Constructor is private
impl->set_named_tensor_meta(std::make_unique<NamedTensorMeta>(NamedTensorMeta::HasNonWildcard, *names));
} else {
meta->set_names(NamedTensorMeta::HasNonWildcard, *names);
}
}
void internal_set_names_inplace(TensorImpl* impl, std::vector<Dimname>&& names, bool validate_names) {
if (validate_names) {
check_names_valid_for(impl, names);
}
// Do this after validation!
if (std::all_of(names.begin(), names.end(), [](const Dimname& n) { return n.isWildcard(); })) {
impl->set_named_tensor_meta(nullptr);
return;
}
auto* meta = get_named_tensor_meta(impl);
if (meta == nullptr) {
impl->set_named_tensor_meta(std::make_unique<NamedTensorMeta>(NamedTensorMeta::HasNonWildcard, std::move(names)));
} else {
meta->set_names(NamedTensorMeta::HasNonWildcard, std::move(names));
}
}
optional<DimnameList> get_opt_names(const TensorImpl* impl) {
const auto* meta = get_named_tensor_meta(impl);
if (meta == nullptr) {
return nullopt;
} else {
return meta->names();
}
}
DimnameList get_names(const TensorImpl* impl) {
auto maybe_names = get_opt_names(impl);
if (maybe_names) {
return *maybe_names;
}
return default_names(impl->dim());
}
bool has_names(const TensorImpl* impl) {
return impl->has_named_tensor_meta() && NamesMode::is_enabled();
}
} // namespace impl
} // namespace at