-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathdata_generator.py
66 lines (60 loc) · 2.83 KB
/
data_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from torchvision import datasets, models, transforms
from torchvision.datasets.folder import default_loader
import argparse
from torch.utils.data import Dataset, DataLoader
import os
from random_erasing import RandomErasing
class DataGenerator(Dataset):
def __init__(self, root, data_transform=None, image_dir=None, target_transform=None):
super(DataGenerator, self).__init__()
assert image_dir is not None
self.image_dir = image_dir
self.samples = [] # train_data xxx_label_flag_yyy.jpg
self.img_label = []
self.img_flag = []
self.data_transform = data_transform
self.target_transform = target_transform
# self.class_num=len(os.listdir(self.image_dir)) # the number of the class
self.train_val = root # judge whether it is used for training for testing
if root == 'train_new':
for folder in os.listdir(self.image_dir):
fdir = self.image_dir + '/' + folder # folder gen_0000 means the images are generated images, so their flags are 1
if folder == 'gen_0000':
for files in os.listdir(fdir):
temp = folder + '_' + files
self.img_label.append(int(folder[-4:]))
self.img_flag.append(1)
self.samples.append(temp)
else:
for files in os.listdir(fdir):
temp = folder + '_' + files
self.img_label.append(int(folder))
self.img_flag.append(0)
self.samples.append(temp)
else: # val
for folder in os.listdir(self.image_dir):
fdir = self.image_dir + '/' + folder
for files in os.listdir(fdir):
temp = folder + '_' + files
self.img_label.append(int(folder))
self.img_flag.append(0)
self.samples.append(temp)
def __len__(self):
return len(self.samples)
def __getitem__(self, idx):
temp = self.samples[idx] # folder_files
# print(temp)
if self.img_flag[idx] == 1:
foldername = 'gen_0000'
filename = temp[9:]
else:
foldername = temp[:4]
filename = temp[5:]
# print(self.image_dir + '/' + foldername + '/' + filename)
img = default_loader(self.image_dir + '/' + foldername + '/' + filename)
if self.train_val == 'train_new':
result = {'img': self.data_transform(img), 'label': self.img_label[idx],
'flag': self.img_flag[idx]} # flag=0 for ture data and 0 for generated data
else:
result = {'img': self.data_transform(img), 'label': self.img_label[idx], 'flag': self.img_flag[idx]}
return result