You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi AF2Rank authors! I was trying to run the colab notebook but met the following DNN library initialization failed error.
When I run the first cell under "## rank structures"
NAME = "1mjc"
CHAIN = "A" # this can be multiple chains
NATIVE_PATH = f"{NAME}.pdb"
DECOY_DIR = f"{NAME}"
if save_output_pdbs:
os.makedirs(f"{NAME}_output",ok_exists=True)
# get data
%shell wget -qnc https://files.ipd.uw.edu/pub/decoyset/natives/{NAME}.pdb
%shell wget -qnc https://files.ipd.uw.edu/pub/decoyset/decoys/{NAME}.zip
%shell unzip -qqo {NAME}.zip
# setup model
clear_mem()
af = af2rank(NATIVE_PATH, CHAIN, model_name=SETTINGS["model_name"])
I met the following error
---------------------------------------------------------------------------
XlaRuntimeError Traceback (most recent call last)
[<ipython-input-4-5740c8be5964>](https://localhost:8080/#) in <cell line: 17>()
15 # setup model
16 clear_mem()
---> 17 af = af2rank(NATIVE_PATH, CHAIN, model_name=SETTINGS["model_name"])
21 frames
[<ipython-input-2-b0744074ff0e>](https://localhost:8080/#) in __init__(self, pdb, chain, model_name, model_names)
75 "model_name":model_name,
76 "model_names":model_names}
---> 77 self.reset()
78
79 def reset(self):
[<ipython-input-2-b0744074ff0e>](https://localhost:8080/#) in reset(self)
78
79 def reset(self):
---> 80 self.model = mk_af_model(protocol="fixbb",
81 use_templates=True,
82 use_multimer=self.args["use_multimer"],
[/content/colabdesign/af/model.py](https://localhost:8080/#) in __init__(self, protocol, use_multimer, use_templates, debug, data_dir, **kwargs)
118 self._model_params, self._model_names = [],[]
119 for model_name in model_names:
--> 120 params = data.get_model_haiku_params(model_name=model_name, data_dir=data_dir, fuse=True)
121 if params is not None:
122 if not self._args["use_multimer"] and not self._args["use_templates"]:
[/content/colabdesign/af/alphafold/model/data.py](https://localhost:8080/#) in get_model_haiku_params(model_name, data_dir, fuse)
39 with open(path, 'rb') as f:
40 params = np.load(io.BytesIO(f.read()), allow_pickle=False)
---> 41 return utils.flat_params_to_haiku(params, fuse=fuse)
[/content/colabdesign/af/alphafold/model/utils.py](https://localhost:8080/#) in flat_params_to_haiku(params, fuse)
108 P[f"{k}/{c}"] = {}
109 for d in ["bias","weights"]:
--> 110 P[f"{k}/{c}"][d] = jnp.concatenate([L[d],R[d]],-1)
111 P[f"{k}/center_norm"] = P.pop(f"{k}/center_layer_norm")
112 P[f"{k}/left_norm_input"] = P.pop(f"{k}/layer_norm_input")
[/usr/local/lib/python3.10/dist-packages/jax/_src/numpy/lax_numpy.py](https://localhost:8080/#) in concatenate(arrays, axis, dtype)
1852 k = 16
1853 while len(arrays_out) > 1:
-> 1854 arrays_out = [lax.concatenate(arrays_out[i:i+k], axis)
1855 for i in range(0, len(arrays_out), k)]
1856 return arrays_out[0]
[/usr/local/lib/python3.10/dist-packages/jax/_src/numpy/lax_numpy.py](https://localhost:8080/#) in <listcomp>(.0)
1852 k = 16
1853 while len(arrays_out) > 1:
-> 1854 arrays_out = [lax.concatenate(arrays_out[i:i+k], axis)
1855 for i in range(0, len(arrays_out), k)]
1856 return arrays_out[0]
[/usr/local/lib/python3.10/dist-packages/jax/_src/lax/lax.py](https://localhost:8080/#) in concatenate(operands, dimension)
615 if isinstance(op, Array):
616 return type_cast(Array, op)
--> 617 return concatenate_p.bind(*operands, dimension=dimension)
618
619
[/usr/local/lib/python3.10/dist-packages/jax/_src/core.py](https://localhost:8080/#) in bind(self, *args, **params)
384 assert (not config.jax_enable_checks or
385 all(isinstance(arg, Tracer) or valid_jaxtype(arg) for arg in args)), args
--> 386 return self.bind_with_trace(find_top_trace(args), args, params)
387
388 def bind_with_trace(self, trace, args, params):
[/usr/local/lib/python3.10/dist-packages/jax/_src/core.py](https://localhost:8080/#) in bind_with_trace(self, trace, args, params)
387
388 def bind_with_trace(self, trace, args, params):
--> 389 out = trace.process_primitive(self, map(trace.full_raise, args), params)
390 return map(full_lower, out) if self.multiple_results else full_lower(out)
391
[/usr/local/lib/python3.10/dist-packages/jax/_src/core.py](https://localhost:8080/#) in process_primitive(self, primitive, tracers, params)
819
820 def process_primitive(self, primitive, tracers, params):
--> 821 return primitive.impl(*tracers, **params)
822
823 def process_call(self, primitive, f, tracers, params):
[/usr/local/lib/python3.10/dist-packages/jax/_src/dispatch.py](https://localhost:8080/#) in apply_primitive(prim, *args, **params)
129 try:
130 in_avals, in_shardings = util.unzip2([arg_spec(a) for a in args])
--> 131 compiled_fun = xla_primitive_callable(
132 prim, in_avals, OrigShardings(in_shardings), **params)
133 except pxla.DeviceAssignmentMismatchError as e:
[/usr/local/lib/python3.10/dist-packages/jax/_src/util.py](https://localhost:8080/#) in wrapper(*args, **kwargs)
261 return f(*args, **kwargs)
262 else:
--> 263 return cached(config._trace_context(), *args, **kwargs)
264
265 wrapper.cache_clear = cached.cache_clear
[/usr/local/lib/python3.10/dist-packages/jax/_src/util.py](https://localhost:8080/#) in cached(_, *args, **kwargs)
254 @functools.lru_cache(max_size)
255 def cached(_, *args, **kwargs):
--> 256 return f(*args, **kwargs)
257
258 @functools.wraps(f)
[/usr/local/lib/python3.10/dist-packages/jax/_src/dispatch.py](https://localhost:8080/#) in xla_primitive_callable(prim, in_avals, orig_in_shardings, **params)
220 return out,
221 donated_invars = (False,) * len(in_avals)
--> 222 compiled = _xla_callable_uncached(
223 lu.wrap_init(prim_fun), prim.name, donated_invars, False, in_avals,
224 orig_in_shardings)
[/usr/local/lib/python3.10/dist-packages/jax/_src/dispatch.py](https://localhost:8080/#) in _xla_callable_uncached(fun, name, donated_invars, keep_unused, in_avals, orig_in_shardings)
250 fun, name, donated_invars, keep_unused, True, in_avals, orig_in_shardings,
251 lowering_platform=None)
--> 252 return computation.compile().unsafe_call
253
254
[/usr/local/lib/python3.10/dist-packages/jax/_src/interpreters/pxla.py](https://localhost:8080/#) in compile(self, compiler_options)
2204 **self.compile_args)
2205 else:
-> 2206 executable = UnloadedMeshExecutable.from_hlo(
2207 self._name,
2208 self._hlo,
[/usr/local/lib/python3.10/dist-packages/jax/_src/interpreters/pxla.py](https://localhost:8080/#) in from_hlo(***failed resolving arguments***)
2542 break
2543
-> 2544 xla_executable, compile_options = _cached_compilation(
2545 hlo, name, mesh, spmd_lowering,
2546 tuple_args, auto_spmd_lowering, allow_prop_to_outputs,
[/usr/local/lib/python3.10/dist-packages/jax/_src/interpreters/pxla.py](https://localhost:8080/#) in _cached_compilation(computation, name, mesh, spmd_lowering, tuple_args, auto_spmd_lowering, _allow_propagation_to_outputs, host_callbacks, backend, da, pmap_nreps, compiler_options_keys, compiler_options_values)
2452 "Finished XLA compilation of {fun_name} in {elapsed_time} sec",
2453 fun_name=name, event=dispatch.BACKEND_COMPILE_EVENT):
-> 2454 xla_executable = dispatch.compile_or_get_cached(
2455 backend, computation, dev, compile_options, host_callbacks)
2456 return xla_executable, compile_options
[/usr/local/lib/python3.10/dist-packages/jax/_src/dispatch.py](https://localhost:8080/#) in compile_or_get_cached(backend, computation, devices, compile_options, host_callbacks)
494
495 if not use_compilation_cache:
--> 496 return backend_compile(backend, computation, compile_options,
497 host_callbacks)
498
[/usr/local/lib/python3.10/dist-packages/jax/_src/profiler.py](https://localhost:8080/#) in wrapper(*args, **kwargs)
312 def wrapper(*args, **kwargs):
313 with TraceAnnotation(name, **decorator_kwargs):
--> 314 return func(*args, **kwargs)
315 return wrapper
316 return wrapper
[/usr/local/lib/python3.10/dist-packages/jax/_src/dispatch.py](https://localhost:8080/#) in backend_compile(backend, module, options, host_callbacks)
462 # TODO(sharadmv): remove this fallback when all backends allow `compile`
463 # to take in `host_callbacks`
--> 464 return backend.compile(built_c, compile_options=options)
465
466 _ir_dump_counter = itertools.count()
XlaRuntimeError: FAILED_PRECONDITION: DNN library initialization failed. Look at the errors above for more details.
Do you know how to deal with this error?
Thanks!
The text was updated successfully, but these errors were encountered:
Hi AF2Rank authors! I was trying to run the colab notebook but met the following DNN library initialization failed error.
When I run the first cell under "## rank structures"
I met the following error
Do you know how to deal with this error?
Thanks!
The text was updated successfully, but these errors were encountered: