generated from jtr13/cctemplate
-
Notifications
You must be signed in to change notification settings - Fork 139
/
Copy pathbase_r_ggplot2_python_graph.Rmd
734 lines (562 loc) · 29.9 KB
/
base_r_ggplot2_python_graph.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
# Base R, ggplot2, & Python Graphing Performances
Yan Gong, Ziyan Liu
## Preface
One of the most powerful reason that data scientists consider R as an efficient tool is its ability to produce a wide range of plots quickly and easily for data visualizations. However, as Python being introduced more and more in data science projects, the combination of several data processing, ploting, and exploration packages, including `numpy`, `pandas`, `matplotlib`, and `seaborn`, has become another option for data visualizations and further, data explorations. In the meantime, both base R and the most well-known R plotting package, `ggplot2`, also received multiple updates and improved their data visualization performances. The goal of this cheatsheet is to introduce several functions, for each one of base R, `ggplot2`, and Python data science packages, and compare their results in five general type of plots in data analysis: basic histogram, line graph with regression, scatterplot with legend, boxplot with reordered/formatted axes, and boxplot with error bars.
In order to represent the use of packages in Python libraries and compare it with regular approaches in R (base R and `ggplot2` package), the Python session would be embedded within a basic R session and achieve its functionality on a R-based platform, RStudio. Thanks to the openness and diversity of the R libraries, there is a R package called `reticulate`, which enabling seamless, high-performance interoperability between R and Python. According to the documentation of `reticulate`, this package has the functionality of:
- Calling Python from R in a variety of ways including R Markdown, sourcing Python scripts, importing Python modules, and using Python interactively within an R session;
- Translation between R and Python objects (for example, between R and Pandas data frames, or between R matrices and NumPy arrays);
- Flexible binding to different versions of Python including virtual environments and Conda environments.
Similar as in base R and `ggplot2`, functions in `numpy`, `pandas`, `matplotlib`, and `seaborn` are called to generate the five main kinds of plots.
## Preparation
```{r, include = FALSE, eval = FALSE}
knitr::opts_chunk$set(echo = TRUE,eval = FALSE)
```
```{r warning = FALSE, message = FALSE,eval = FALSE}
# Clean up workspace environment
rm(list = ls())
# Call packages used for the assignment
library(reticulate) # Enable Python usage in R
library(dplyr)
library(ggplot2)
library(gplots)
set.seed(100)
```
## Python Environment Setup
Before running Python code chunks in R markdown, RStudio requires the installation of miniconda, a small, bootstrap version of Anaconda with only conda, Python, the packages they depend on, and a small number of other useful packages. In default settings, installation of Miniconda and making it as the default environment is forced, unless the user has explicitly requested a particular version of Python with one of the `use_*()` helpers.
To install miniconda in RStudio, check the meta path (working directory of miniconda) by `reticulate:::miniconda_meta_path()`:
```
> library(reticulate)
> reticulate:::miniconda_meta_path()
[1] "C:\\Users\\Shiro\\AppData\\Local/r-reticulate/r-reticulate/miniconda.json"
```
Then install miniconda by `reticulate::install_miniconda()`:
```
> reticulate::install_miniconda()
* Downloading "https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe" ...
trying URL 'https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe'
Content type 'application/octet-stream' length 60924672 bytes (58.1 MB)
downloaded 58.1 MB
* Installing Miniconda -- please wait a moment ...
Collecting package metadata (current_repodata.json): ...working... done
Solving environment: ...working... done
## Package Plan ##
environment location: C:\Users\Shiro\AppData\Local\R-MINI~1
added / updated specs:
- conda
The following packages will be downloaded:
package | build
---------------------------|-----------------
ca-certificates-2021.10.26 | haa95532_2 115 KB
certifi-2021.10.8 | py39haa95532_0 152 KB
charset-normalizer-2.0.4 | pyhd3eb1b0_0 35 KB
cryptography-35.0.0 | py39h71e12ea_0 991 KB
idna-3.2 | pyhd3eb1b0_0 48 KB
openssl-1.1.1l | h2bbff1b_0 4.8 MB
pip-21.2.4 | py39haa95532_0 1.8 MB
pyopenssl-21.0.0 | pyhd3eb1b0_1 49 KB
pywin32-228 | py39hbaba5e8_1 5.6 MB
requests-2.26.0 | pyhd3eb1b0_0 59 KB
setuptools-58.0.4 | py39haa95532_0 778 KB
tqdm-4.62.3 | pyhd3eb1b0_1 83 KB
tzdata-2021e | hda174b7_0 112 KB
urllib3-1.26.7 | pyhd3eb1b0_0 111 KB
wheel-0.37.0 | pyhd3eb1b0_1 33 KB
wincertstore-0.2 | py39haa95532_2 15 KB
------------------------------------------------------------
Total: 14.8 MB
The following NEW packages will be INSTALLED:
charset-normalizer pkgs/main/noarch::charset-normalizer-2.0.4-pyhd3eb1b0_0
The following packages will be REMOVED:
chardet-4.0.0-py39haa95532_1003
The following packages will be UPDATED:
ca-certificates 2021.7.5-haa95532_1 --> 2021.10.26-haa95532_2
certifi 2021.5.30-py39haa95532_0 --> 2021.10.8-py39haa95532_0
cryptography 3.4.7-py39h71e12ea_0 --> 35.0.0-py39h71e12ea_0
idna 2.10-pyhd3eb1b0_0 --> 3.2-pyhd3eb1b0_0
openssl 1.1.1k-h2bbff1b_0 --> 1.1.1l-h2bbff1b_0
pip 21.1.3-py39haa95532_0 --> 21.2.4-py39haa95532_0
pyopenssl 20.0.1-pyhd3eb1b0_1 --> 21.0.0-pyhd3eb1b0_1
pywin32 228-py39he774522_0 --> 228-py39hbaba5e8_1
requests 2.25.1-pyhd3eb1b0_0 --> 2.26.0-pyhd3eb1b0_0
setuptools 52.0.0-py39haa95532_0 --> 58.0.4-py39haa95532_0
tqdm 4.61.2-pyhd3eb1b0_1 --> 4.62.3-pyhd3eb1b0_1
tzdata 2021a-h52ac0ba_0 --> 2021e-hda174b7_0
urllib3 1.26.6-pyhd3eb1b0_1 --> 1.26.7-pyhd3eb1b0_0
wheel 0.36.2-pyhd3eb1b0_0 --> 0.37.0-pyhd3eb1b0_1
wincertstore 0.2-py39h2bbff1b_0 --> 0.2-py39haa95532_2
Downloading and Extracting Packages
certifi-2021.10.8 | 152 KB | ########## | 100%
pip-21.2.4 | 1.8 MB | ########## | 100%
pywin32-228 | 5.6 MB | ########## | 100%
urllib3-1.26.7 | 111 KB | ########## | 100%
openssl-1.1.1l | 4.8 MB | ########## | 100%
requests-2.26.0 | 59 KB | ########## | 100%
tqdm-4.62.3 | 83 KB | ########## | 100%
wincertstore-0.2 | 15 KB | ########## | 100%
idna-3.2 | 48 KB | ########## | 100%
tzdata-2021e | 112 KB | ########## | 100%
cryptography-35.0.0 | 991 KB | ########## | 100%
setuptools-58.0.4 | 778 KB | ########## | 100%
pyopenssl-21.0.0 | 49 KB | ########## | 100%
charset-normalizer-2 | 35 KB | ########## | 100%
wheel-0.37.0 | 33 KB | ########## | 100%
ca-certificates-2021 | 115 KB | ########## | 100%
Preparing transaction: ...working... done
Verifying transaction: ...working... done
Executing transaction: ...working... done
Collecting package metadata (current_repodata.json): ...working... done
Solving environment: ...working... done
## Package Plan ##
environment location: C:\Users\Shiro\AppData\Local\R-MINI~1\envs\r-reticulate
added / updated specs:
- numpy
- python=3.6
The following packages will be downloaded:
package | build
---------------------------|-----------------
certifi-2020.12.5 | py36haa95532_0 140 KB
intel-openmp-2021.4.0 | h57928b3_3556 3.2 MB conda-forge
libblas-3.9.0 | 12_win64_mkl 4.5 MB conda-forge
libcblas-3.9.0 | 12_win64_mkl 4.5 MB conda-forge
liblapack-3.9.0 | 12_win64_mkl 4.5 MB conda-forge
mkl-2021.4.0 | h0e2418a_729 181.7 MB conda-forge
numpy-1.19.5 | py36h4b40d73_2 4.9 MB conda-forge
pip-21.3.1 | pyhd8ed1ab_0 1.2 MB conda-forge
python-3.6.13 |h39d44d4_2_cpython 18.9 MB conda-forge
python_abi-3.6 | 2_cp36m 4 KB conda-forge
setuptools-49.6.0 | py36ha15d459_3 921 KB conda-forge
tbb-2021.4.0 | h2d74725_0 149 KB conda-forge
ucrt-10.0.20348.0 | h57928b3_0 1.2 MB conda-forge
vc-14.2 | hb210afc_5 13 KB conda-forge
vs2015_runtime-14.29.30037 | h902a5da_5 1.3 MB conda-forge
wheel-0.37.0 | pyhd8ed1ab_1 31 KB conda-forge
wincertstore-0.2 |py36ha15d459_1006 15 KB conda-forge
------------------------------------------------------------
Total: 227.0 MB
The following NEW packages will be INSTALLED:
certifi pkgs/main/win-64::certifi-2020.12.5-py36haa95532_0
intel-openmp conda-forge/win-64::intel-openmp-2021.4.0-h57928b3_3556
libblas conda-forge/win-64::libblas-3.9.0-12_win64_mkl
libcblas conda-forge/win-64::libcblas-3.9.0-12_win64_mkl
liblapack conda-forge/win-64::liblapack-3.9.0-12_win64_mkl
mkl conda-forge/win-64::mkl-2021.4.0-h0e2418a_729
numpy conda-forge/win-64::numpy-1.19.5-py36h4b40d73_2
pip conda-forge/noarch::pip-21.3.1-pyhd8ed1ab_0
python conda-forge/win-64::python-3.6.13-h39d44d4_2_cpython
python_abi conda-forge/win-64::python_abi-3.6-2_cp36m
setuptools conda-forge/win-64::setuptools-49.6.0-py36ha15d459_3
tbb conda-forge/win-64::tbb-2021.4.0-h2d74725_0
ucrt conda-forge/win-64::ucrt-10.0.20348.0-h57928b3_0
vc conda-forge/win-64::vc-14.2-hb210afc_5
vs2015_runtime conda-forge/win-64::vs2015_runtime-14.29.30037-h902a5da_5
wheel conda-forge/noarch::wheel-0.37.0-pyhd8ed1ab_1
wincertstore conda-forge/win-64::wincertstore-0.2-py36ha15d459_1006
Downloading and Extracting Packages
python-3.6.13 | 18.9 MB | ########## | 100%
libcblas-3.9.0 | 4.5 MB | ########## | 100%
vs2015_runtime-14.29 | 1.3 MB | ########## | 100%
mkl-2021.4.0 | 181.7 MB | ########## | 100%
wincertstore-0.2 | 15 KB | ########## | 100%
tbb-2021.4.0 | 149 KB | ########## | 100%
numpy-1.19.5 | 4.9 MB | ########## | 100%
setuptools-49.6.0 | 921 KB | ########## | 100%
wheel-0.37.0 | 31 KB | ########## | 100%
ucrt-10.0.20348.0 | 1.2 MB | ########## | 100%
python_abi-3.6 | 4 KB | ########## | 100%
certifi-2020.12.5 | 140 KB | ########## | 100%
pip-21.3.1 | 1.2 MB | ########## | 100%
vc-14.2 | 13 KB | ########## | 100%
intel-openmp-2021.4. | 3.2 MB | ########## | 100%
libblas-3.9.0 | 4.5 MB | ########## | 100%
liblapack-3.9.0 | 4.5 MB | ########## | 100%
Preparing transaction: ...working... done
Verifying transaction: ...working... done
Executing transaction: ...working... done
#
# To activate this environment, use
#
# $ conda activate r-reticulate
#
# To deactivate an active environment, use
#
# $ conda deactivate
* Miniconda has been successfully installed at "C:/Users/Shiro/AppData/Local/r-miniconda".
[1] "C:/Users/Shiro/AppData/Local/r-miniconda"
```
Import all Python packages as neeeded:
```{python,eval = FALSE}
# numpy was automatically installed with miniconda
import numpy as np
# install pandas by py_install('pandas')
import pandas as pd
# install matplotlib by py_install('matplotlib')
import matplotlib.pyplot as plt # interactive plot: use `plotly` package
# install seaborn by py_install('seaborn')
import seaborn as sns
# Set style globally
sns.set_style('darkgrid')
```
Basically, with the magic funtion (`%`) applied globally in Python, all plots in figures which generated by `matplotlib` could be shown automatically in notebooks:
```
%matplotlib inline
```
However, it seems like the magic functions only work on Python environments and platforms. `matplotlib.pyplot.show()` would be used for each figure as alternatives.
## Base R Plot Function
```{r, fig.width=13,eval = FALSE}
X <- 1:20
Y <- X*X
par(mfrow=c(3,3), mar=c(2,3,1,0)+.5, mgp=c(1.5,.6,0))
# a window that can show 3 * 3 plots at the same time
plot(X, Y, type = "p") # "p" for points
plot(X, Y, type = "l") # "l" for lines
plot(X, Y, type = "b") # "b" for both points and lines
plot(X, Y, type = "o") # "o" for both overplotted
plot(X, Y, type = "c") # "c" for empty points joined by lines
plot(X, Y, type = "s") # "s" for stair steps
plot(X, Y, type = "h") # "h" for histogram-like vertical lines
plot(X, Y, type = "n") # "n" for no plotting
```
There are many parameters that you can change within `plot` function to adjust the appearance of a plot. For example, different `pch` values give different shapes of points as shown in the figure.
![](resources/base_r_ggplot2_python_graph/symbol_image.png)
```{r, plot function aesthetics,eval = FALSE}
plot(X, Y, type = "p",
las = 1, # orient y-axis label
pch = 15, # shape of point
cex=1.5, # size of point
col = 2, # color of point
xlab = "x", # x axis label
ylab = "y", # y axis label
main = "f(x) = x^2", # title of plot
cex.lab = 1.5, # size of axis labels
cex.axis = 1.2, # size of tick mark labels
cex.main = 2) # size of main title
```
### ggplot2
```{r,eval = FALSE}
ggplot(data.frame(X,Y), aes(x=X,y=Y)) + geom_point()
ggplot(data.frame(X,Y), aes(x=X,y=Y)) + geom_line()
ggplot(data.frame(X,Y), aes(x=X,y=Y)) + geom_point() + geom_line()
ggplot(data.frame(X,Y), aes(x=X,y=Y)) + geom_step()
```
## Basic Histogram
### base R
Base R provides the function `hist`, with which we can easily create histograms. Notice that the parameter `break` is not the same as `bins` in ggplot2. When we give an integer to `break`, `hist` only takes it as a suggestion number of breaks to use in the histogram.
```{r, histogram breaks,eval = FALSE}
set.seed(123)
x <- rpois(n=50, lambda = 15)
par(mfrow=c(1,2))
hist(x,
breaks = 12, # number of cells, suggestion only
xlab = "x", ylab = "frequency") # axis labels
hist(x,
breaks = c(7:21), # vector of breakpoints
xlab = "x", ylab = "frequency", # axis labels
las = 1) #rotate the y-axis label direction
```
### ggplot2
```{r,eval = FALSE}
ggplot(data.frame(x), aes(x=x)) +
geom_histogram(bins = 12, color = "black", fill = "gray") +
xlab("x") + ylab("frequency") +
ggtitle("Histogram of 50 Randomly Generated Numbers")
```
### Python
Loading the example dataset with `pandas`:
```{python,eval = FALSE}
df = pd.read_csv('https://raw.githubusercontent.com/bryanrgibson/eods-f21/main/data/yellowcab_demo_withdaycategories.csv',
sep = ',',
header = 1,
parse_dates = ['pickup_datetime', 'dropoff_datetime'])
```
Both `pandas` and `seaborn` packages could be used to plot histograms. By using `matplotlib` package to construct subplots, figures, and axes, multiple histograms could be plotted within the same figure:
```{python,eval = FALSE}
# Plotting with `pandas`
# Create figure with `matplotlib`
fig,ax = plt.subplots(1, 2, figsize = (16,4))
# Subset dataset for trips before the noon, plot histogram by pandas.DataFrame.plot.hist(), and place the plot in the first subplot
df[df.pickup_datetime.dt.hour < 12].fare_amount.plot.hist(bins = 100, ax = ax[0]);
# Set labels and title
ax[0].set_xlabel("fare_amount (dollars)");
ax[0].set_title("Trips before Noon");
# Subset dataset for trips after the noon, plot histogram by pandas.DataFrame.plot.hist(), and place the plot in the second subplot
df[df.pickup_datetime.dt.hour >= 12].fare_amount.plot.hist(bins = 100, ax = ax[1]);
# Set labels and title
ax[1].set_xlabel("fare_amount (dollars)");
ax[1].set_title("Trips after Noon");
# Extra step needed in R markdown; not required in Jupyter Notebook
plt.show()
```
```{python,eval = FALSE}
# Plotting with `seaborn`
# Create figure with `matplotlib`
fig,ax = plt.subplots(1, 2, figsize = (16,4))
# Subset dataset for trips before the noon by pandas.DataFrame.query(), plot histogram by seaborn.histplot(), and place the plot in the first subplot
sns.histplot(x = 'fare_amount',
data = df.query("pickup_datetime.dt.hour < 12"),
ax = ax[0]);
# Subset dataset for trips after the noon, plot histogram by seaborn.histplot(), and place the plot in the first subplot
sns.histplot(x = df.fare_amount[df.pickup_datetime.dt.hour >= 12],
ax = ax[1]);
# Extra step needed in R markdown; not required in Jupyter Notebook
plt.show()
```
## Basic Line Graph with Regression
```{r,eval = FALSE}
set.seed(123)
X1 = c(1:30)
Y1 = rnorm(30, mean=20, sd=5)
```
### base R
With base R, we can plot line graphs with `plot`, and change the type, width and color of line with parameters very efficiently. We can add linear regression line by fitting a model and draw the line with `abline` in base R.
```{r,eval = FALSE}
par(mfrow=c(2,3))
plot(X1, Y1, type="l", xlab="x", ylab="y")
plot(X1, Y1, type="l", xlab="x", ylab="y", lty="dashed") #"lty" for line type
plot(X1, Y1, type="l", xlab="x", ylab="y", lty="dotted")
plot(X1, Y1, type="l", xlab="x", ylab="y", col="red") #"col" for color of line
plot(X1, Y1, type="l", xlab="x", ylab="y", col="red", lwd=3) #"lwd" for "line width"
plot(X1, Y1, type="l", xlab="x", ylab="y", col="red", lwd=2)
fit1 = lm(Y1~X1)
abline(fit1, lty = "dashed") #add an abline in the last plot
```
### ggplot2
To add linear model fit line in ggplot2, use `geom_smooth(method = 'lm')`.
```{r,eval = FALSE}
ggplot(data.frame(X1, Y1), aes(x=X1, y=Y1)) +
geom_line(col = "red", lwd=0.8) +
geom_smooth(method = "lm", se = FALSE, col="black", lty="dashed")
```
### Python
Loading the example dataset with `pandas`:
```{python,eval = FALSE}
df_wine = pd.read_csv('https://raw.githubusercontent.com/bryanrgibson/eods-f21/main/data/wine_dataset.csv',
usecols = ['alcohol','ash','proline','hue','class'])
```
Although the `lm()` function could generate the linear model within the R session and `reticulate` allows users to access datasets stored in the environment in both R and Python chunks, it is still not easy to use the model generated by R functions to plot by Python. Instead, the whole process would be done by Python, using the `sklearn` package:
```{python,eval = FALSE}
# install scikit-learn (sklearn) by py_install('scikit-learn')
from sklearn.linear_model import LinearRegression
# Instantiate the model and set hyperparameters
lr = LinearRegression(fit_intercept = True,
normalize = False) # by default
# Fit the model
# .reshape(-1, 1): scikit-learn models expect the input features to be 2 dimensional
lr.fit(X = df_wine.proline.values.reshape(-1, 1), y = df_wine.alcohol);
# Predict values and plot the model
x_predict = [df_wine.proline.min(), df_wine.proline.max()]
y_hat = lr.predict(np.array(x_predict).reshape(-1, 1))
fig,ax = plt.subplots(1, 1, figsize = (12,8))
ax = sns.scatterplot(x = df_wine.proline, y = df_wine.alcohol);
ax.plot(x_predict, y_hat);
# Extra step needed in R markdown; not required in Jupyter Notebook
plt.show()
```
Again, the plotting part has the `pandas` package involved (`pandas.DataFrame.plot()`).
Without constructing a linear regression model, instead, `seaborn` has a function called `seaborn.regplot()`, which could directly add a regression line:
```{python,eval = FALSE}
# Create figure with `matplotlib`
fig,ax = plt.subplots(1, 1, figsize = (12,8))
# Add regression line
sns.regplot(x = 'proline', y = 'alcohol', data = df_wine, ax = ax);
# Extra step needed in R markdown; not required in Jupyter Notebook
plt.show()
```
## Scatterplot with Legend
### base R
Without specifying the type in `plot`, the function by default creates scatterplots.
```{r, add legend,eval = FALSE}
data(iris)
plot(iris$Sepal.Length, iris$Petal.Length, # x variable, y variable
col = iris$Species, # color by species
pch = 18, # type of point to use
cex = 1.5, # size of point to use
xlab = "Sepal Length", # x axis label
ylab = "Petal Length", # y axis label
main = "Flower Characteristics in Iris") # plot title
legend ("topleft", legend = levels(iris$Species), col = c(1:3), pch = 18)
```
### ggplot2
```{r,eval = FALSE}
ggplot(iris, aes(x=Sepal.Length, y=Petal.Length, color = Species)) +
geom_point() +
xlab("Sepal Length") +
ylab("Petal length") +
ggtitle("Flower Characteristics in Iris")
```
### Python
The most strightforward way to make scatterplots is to use the `matplotlib.pyplot.scatter()` function from `matplotlib` package:
```{python,eval = FALSE}
# Create figure with `matplotlib`
fig,ax = plt.subplots(1, 2, figsize = (12,4))
# Plot scatterplot by matplotlib.pyplot.scatter(), and place the plot in the first subplot
ax[0].scatter(df.trip_distance,
df.fare_amount,
marker = 'x',
color = 'blue');
# Plot scatterplot by matplotlib.pyplot.scatter(), and place the plot in the second subplot
ax[1].scatter(df.trip_distance,
df.tip_amount,
color = 'red');
# Set labels and titles
ax[0].set_xlabel('trip_distance');
ax[1].set_xlabel('trip_distance');
ax[0].set_ylabel('fare_amount'), ax[1].set_ylabel('tip_amount');
ax[0].set_title('trip_distance vs fare_amount');
ax[1].set_title('trip_distance vs tip_amount');
fig.suptitle('Yellowcab Taxi Features');
# Extra step needed in R markdown; not required in Jupyter Notebook
plt.show()
```
To add a legend, just simply add `matplotlib.pyplot.legend()`:
```{python,eval = FALSE}
# Create figure with `matplotlib`
fig,ax = plt.subplots(figsize = (16,4))
# Subset dataset for trips before the noon, plot scatterplot by matplotlib.pyplot.scatter(), and place the plot in the figure
ax.scatter(df[df.pickup_datetime.dt.hour < 12].trip_distance,
df[df.pickup_datetime.dt.hour < 12].fare_amount,
marker = 'x',
color = 'blue',
label = 'Before Noon');
# Subset dataset for trips after the noon, plot scatterplot by matplotlib.pyplot.scatter(), and place the plot in the figure
ax.scatter(df[df.pickup_datetime.dt.hour >= 12].trip_distance,
df[df.pickup_datetime.dt.hour >= 12].fare_amount,
marker = 'o',
color = 'red',
label = 'After Noon');
# Set labels and title
ax.set_xlabel("trip_distance");
ax.set_ylabel("fare_amount (dollars)");
ax.set_title("Yellowcab Taxi Features");
# Set legends
# Set the location of legends at the best place
ax.legend(loc = 'best')
# Extra step needed in R markdown; not required in Jupyter Notebook
plt.show()
```
## Boxplot with Reordered and Formatted Axes
### base R
The function `boxplot` is used in base R to create boxplots, and adding notches to the plot makes it easier to see the difference among the data.
```{r,eval = FALSE}
boxplot(iris$Sepal.Length ~ iris$Species)
boxplot(iris$Sepal.Length ~ iris$Species, notch=T)
boxplot(iris$Sepal.Length ~ iris$Species, notch=T,
xlab = "Species",
ylab = "Sepal Length",
las = 1,
main = "Sepal Length by Species in Iris")
```
### ggplot2
```{r,eval = FALSE}
ggplot(iris, aes(x=Species, y=Sepal.Length)) + geom_boxplot()
```
### Python
The most convenient method to draw boxplot is using `seaborn`. The result plots could show the first quantile, the second quantile (median), the third quantile, whiskers (usually as 1.5*IQR), and possible outliers.
For a single horizontal boxplot:
```{python,eval = FALSE}
# Create figure with `matplotlib`
fig,ax = plt.subplots(1, 1, figsize = (16,4))
# Draw horizontal boxplot
sns.boxplot(x = df.fare_amount, ax = ax);
# Extra step needed in R markdown; not required in Jupyter Notebook
plt.show()
```
Draw a vertical/horizontal boxplot grouped by a categorical variable:
```{python,eval = FALSE}
# Create figure with `matplotlib`
fig,ax = plt.subplots(1, 2, figsize = (16,4))
# Draw vertical boxplot
sns.boxplot(x = df.payment_type, y = df.fare_amount, ax = ax[0]);
# Draw horizontal boxplot for each numeric variable in the DataFrame
sns.boxplot(data = df, orient = "h", ax = ax[1]);
# Extra step needed in R markdown; not required in Jupyter Notebook
plt.show()
```
Adding `hue` to the boxplot:
```{python,eval = FALSE}
# Create figure with `matplotlib`
fig,ax = plt.subplots(1, 1, figsize = (16,4))
# Draw vertical boxplot
sns.boxplot(x = df.day_of_week,
y = df.fare_amount,
hue = df.is_weekend,
ax = ax);
# Extra step needed in R markdown; not required in Jupyter Notebook
plt.show()
```
## Barplot with Error Bars
```{r,eval = FALSE}
dragons <- data.frame(
TalonLength = c(20.9, 58.3, 35.5),
SE = c(4.5, 6.3, 5.5),
Population = c("England", "Scotland", "Wales"))
```
### base R
```{r,eval = FALSE}
barplot(dragons$TalonLength, names = dragons$Population)
```
Note that `plotCI` requires use the `gplots` package.
```{r, warning=FALSE,eval = FALSE}
dragons$Population <- factor(dragons$Population,
levels=c("Scotland","Wales","England"))
barplot(dragons$TalonLength, names = dragons$Population,
ylim=c(0,70),xlim=c(0,4),yaxs='i', xaxs='i',
main="Dragon Talon Length in the UK",
ylab="Mean Talon Length",
xlab="Country")
par(new=T)
plotCI (dragons$TalonLength,
uiw = dragons$SE, liw = dragons$SE,
gap=0,sfrac=0.01,pch="",
ylim=c(0,70),
xlim=c(0.4,3.7),
yaxs='i', xaxs='i',axes=F,ylab="",xlab="")
```
### ggplot2
`ggplot2` is more recommended to use when drawing bar plots.
```{r,eval = FALSE}
ggplot(dragons,aes(x=Population, y=TalonLength)) +
geom_bar(stat="identity", fill="lightgray", col="black") +
geom_errorbar(ymin=dragons$TalonLength-dragons$SE,
ymax=dragons$TalonLength+dragons$SE) +
ylim(0, 70) + xlab("Country") + ylab("Mean Talon Length")
```
### Python
The `seaborn` package also gives the optimal approach to generate barplots. The function name is `seaborn.boxplot()`. Unlike R, barplots generated by `seaborn` has error bars in default.
For simply plotting numeric and categorical variables:
```{python,eval = FALSE}
# Create figure with `matplotlib`
fig,ax = plt.subplots(1, 1, figsize = (16,4))
# Draw barplot for mean of df.fare_amount
sns.barplot(x = df.payment_type,
y = df.fare_amount,
estimator = np.mean,
ci = 95);
# Set label
ax.set_label("Mean of fare_amount");
# Extra step needed in R markdown; not required in Jupyter Notebook
plt.show()
```
Add `hue` to the barplot:
```{python,eval = FALSE}
# Create figure with `matplotlib`
fig,ax = plt.subplots(1, 1, figsize = (12,6))
# Add df.payment_type as the hue
sns.barplot(x = 'day_of_week',
y = 'fare_amount',
hue = 'payment_type',
data = df);
# Set legend location
ax.legend(loc = 'best')
# Extra step needed in R markdown; not required in Jupyter Notebook
plt.show()
```
### Conclusion
With the success of achieving data visualization by Python in R sessions, comparing all generated plots with those by base R and `ggplot2` package, it is not hard to find that, given a processed dataset, both R and Python have well-developed, professional, and powerful packages to visualize and explore the dataset.
### References
1. R Base Graphics: An Idiot's Guide [https://rstudio-pubs-static.s3.amazonaws.com/7953_4e3efd5b9415444ca065b1167862c349.html](https://rstudio-pubs-static.s3.amazonaws.com/7953_4e3efd5b9415444ca065b1167862c349.html)
2. EODS-F21: Elements of Data Science, Fall 2021 [https://github.com/bryanrgibson/eods-f21](https://github.com/bryanrgibson/eods-f21)
3. R Interface to Python [https://rstudio.github.io/reticulate/](https://rstudio.github.io/reticulate/)
4. Numpy and Scipy Documentation [https://docs.scipy.org/doc/](https://docs.scipy.org/doc/)
5. pandas documentation [https://pandas.pydata.org/docs/](https://pandas.pydata.org/docs/)
6. Matplotlib: Visualization with Python - matplotlib.pyplot [https://matplotlib.org/stable/api/pyplot_summary.html](https://matplotlib.org/stable/api/pyplot_summary.html)
7. seaborn: statistical data visualization - User guide and tutorial [https://seaborn.pydata.org/tutorial.html](https://seaborn.pydata.org/tutorial.html)