generated from jtr13/cctemplate
-
Notifications
You must be signed in to change notification settings - Fork 139
/
Copy pathfrom_dplyr_to_pandas_and_back.Rmd
698 lines (509 loc) · 21.7 KB
/
from_dplyr_to_pandas_and_back.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
# R Dplyr vs Python Pandas
Yujia Xie
\
\
```{r, include=FALSE, cache=FALSE}
# this prevents package loading message from appearing in the rendered version of your problem set
knitr::opts_chunk$set(warning = FALSE, message = FALSE, eval=FALSE)
```
```{r, eval=FALSE}
# install.packages('reticulate')
library(reticulate)
library(tidyverse)
```
\
**Dplyr for R** and **Pandas for Python** are the two most popular libraries for working with tabular/structured data for many data scientists and business analysts. People are always arguing about which framework is better. I think they all perform well and it is crucial to choose the best practices for your needs. Your choice among those two will likely depend on the skills available in your organization, the infrastructure and code base available, and the advanced models required to be used. \
This document:
* Explores new tools that you can add to your repertoire as a data scientist.
* Helps you with the transition from one language/framework to the other.
* Creates a reference sheet to go from Dplyr to Pandas and back in case you forget the syntax.
\
### Dplyr for R Quick Overview
![](resources/yujia_resources/dplyr.jpeg)
As one of the core packages of the tidyverse in the R programming language, dplyr is primarily a set of functions designed to enable dataframe manipulation in an intuitive, user-friendly way. While dplyr actually includes several dozen functions that enable various forms of data manipulation, the package features five primary verbs:
* `filter()`, extract rows from a dataframe, based on conditions specified by a user;\
* `select()`, subset a dataframe by its columns;\
* `arrange()`, sort rows in a dataframe based on attributes held by particular columns;\
* `mutate()`, create new variables, by altering and/or combining values from existing columns;\
* `summarize()/summarise()`, collapse values from a dataframe into a single summary.\
These can all be used in conjunction with `group_by()` which changes the scope of each function from operating on the entire dataset to operating on it group-by-group. These six functions provide the verbs for a language of data manipulation. Together these properties make it easy to chain together multiple simple steps to achieve a complex result.\
Sources: https://r4ds.had.co.nz/transform.html#missing-values-1
https://en.wikipedia.org/wiki/Dplyr
\
### Pandas for Python Quick Overview
![](resources/yujia_resources/pandas.png)
Pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool, built on top of the Python programming language. Its offers data structures and operations for manipulating numerical tables and time series. Pandas allows various data manipulation operations such as merging, reshaping, selecting as well as data cleaning, and data wrangling features.\
Pandas is an open source, BSD-licensed library providing:
* high-performance, easy-to-use data structures and data analysis tools
* Primary datastructures:\
-_Series_: 1D array with a flexible index\
-_Dataframe_: 2D matrix with flexible index and column names\
Sources: https://en.wikipedia.org/wiki/Pandas_(software)
https://pandas.pydata.org/docs/reference/frame.html \
\
### Write Python in R Studio
Before we begin: \
Have your Python version of choice installed.\
Update R Studio. To be able to pass data structures between R and Python it’s best to have 1.2.1206 or later installed. \
Install/update the R reticulate package then load the library.\
\
Secondly, we point to the correct version of Python. \
You may have multiple versions of Python installed. If you’re using Mac, you will have a version of Python 2 installed by default as the OS uses. Typing `which -a python python3` into your terminal (Mac OS) and will give you a list of the paths of all the versions of Python on your machine.
In the below R chunk, we tell R to use my Python 3 interpreter, import the sys Python module and find out what version of Python that R is using.
```{r, eval=FALSE}
use_python("/usr/local/bin/python3", required = T)
sys <- import("sys")
sys$version
```
Now we are ready to write Python code by creating a Python chunk.
```{python, eval=FALSE}
# Python in a Python chunk
import pandas as pd
print("We are calling Python from R in a Python Chunk!")
```
Source: https://rpubs.com/onduuuu/python_in_r
\
\
## Dataset
We will use a 1000 random sample from Records of Yellowcab Taxi trips from January 2017.\
More info: https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page \
\
Features:
* `pickup_datetime`: datetime of driver picked up the passenger
* `dropoff_time`: datetime of driver dropped off the passenger
* `trip_distance`: the total distance traveled by the yellowcab carrying this passenger
* `fare_amount`: the fee needs to pay by the passenger
* `tip_amount`: the tip amount given by the passenger to the driver
* `payment_type`: how does the passenger pay; either by credit card or by cash
* `day_of_week`: the day of the week when trip occured
* `is_weekend`: indicates whether trip happened during weekend
```{r echo=FALSE, warning=F, message=F}
r_df <- read_csv("resources/yujia_resources/yellowcab.csv", skip = 1) #second line is the column names
r_df
```
\
\
## The Tutorial and Reference Sheet
## Load Data
### Dplyr
Use `readr::read_csv()`
```{r}
r_df <- readr::read_csv("resources/yujia_resources/yellowcab.csv",
skip = 1) #second line is the column names
```
### Pandas
Use `pd.read_csv()`
```{python}
pd_df = pd.read_csv('resources/yujia_resources/yellowcab.csv',
sep=',',
header=1,
parse_dates=['pickup_datetime','dropoff_datetime'])
```
\
\
## Get Summary Info for DataFrame
### Dplyr
```{r}
r_df %>% str()
```
### Pandas
```{python}
pd_df.info()
```
\
\
## Selecting columns
It is very common that datasets have hundreds or even thousands of variables. We would like to narrow in on the variables we are really interested in.\
### Dplyr
`select()` can help us zoom in on a useful subset using operations based on the names of the variables.\
\
Select columns by column name
```{r eval=FALSE}
r_df %>% select(pickup_datetime, fare_amount, is_weekend)
```
Select all columns between `fare_amount` and `day_of_week` (inclusive)
```{r eval=FALSE}
r_df %>% select(fare_amount:day_of_week)
```
Select all columns except those from `fare_amount` to `day_of_week` (inclusive)
```{r eval=FALSE}
r_df %>% select(-(fare_amount:day_of_week))
```
There are a number of helper functions you can use within select():
* `starts_with("abc")`: matches names that begin with “abc”.
* `ends_with("xyz")`: matches names that end with “xyz”.
* `contains("ijk")`: matches names that contain “ijk”.
* `matches("(.)\\1")`: selects variables that match a regular expression. This one matches any variables that contain repeated characters. You’ll learn more about regular expressions in strings.
* `num_range("x", 1:3)`: matches x1, x2 and x3.
Select columns end with 'datetime'
```{r eval=FALSE}
r_df %>% select(ends_with("datetime"))
```
`select()` can be used in conjunction with the `everything()` helper. This is useful if you have a handful of variables you’d like to move to the start of the data frame.
```{r eval=FALSE}
r_df %>% select(is_weekend, trip_distance, everything())
```
Source: https://r4ds.had.co.nz/transform.html#missing-values-1
### Pandas
Pass columns as list
```{python, eval=FALSE}
pd_df[['trip_distance', 'is_weekend']]
pd_df.loc[:, ['trip_distance', 'is_weekend']]
```
Use Filter Function
```{python, eval=FALSE}
pd_df.filter(items=['trip_distance', 'is_weekend'])
```
Select all columns between fare_amount and day_of_week (inclusive).\
* **loc** is label-based, which means that we have to specify the name of the rows and columns that we need to filter out.\
* **iloc** is integer index-based, we have to specify rows and columns by their integer index.\
* **loc** is inclusive on both sides and **iloc** is left closed and right open.\
* Before `,` represents row; After `,` represents columns
```{python, eval=FALSE}
pd_df.loc[:, 'fare_amount':'day_of_week']
pd_df.iloc[:, 3:7]
```
Select all columns except those from `fare_amount` to `day_of_week` (inclusive)
```{python eval=FALSE}
pd_df.loc[:, ~pd_df.columns.isin(pd_df.columns[3:7])]
```
To select columns end with `datetime` in python.
* Use either regular expression with `filter()` function; More info about regular expression: https://docs.python.org/3/library/re.html
* Or use `.loc` with function `str.endswith()`
```{python eval=FALSE}
pd_df.filter(regex='datetime$',axis=1)
pd_df.loc[:, pd_df.columns.str.endswith("datetime")]
```
\
\
## Selecting Rows
Subset observations based on their values.\
Logical Operator:\
* `&` is “and”\
* `|` is “or”\
* `!` is “not”.\
### Dplyr
Mainly use `filter()` for subsetting rows.\
Only want to observe trips happened during weekends.
```{r eval=FALSE}
r_df %>% filter(is_weekend==TRUE)
```
Only want to observe trips happened during weekends and trip_distance is greater than 2 miles.
```{r eval=FALSE}
r_df %>% filter(is_weekend==TRUE & trip_distance > 2)
```
Only want to observe trips happened during weekdays and trip_distance is less than or equal to 2 miles.
```{r eval=FALSE}
r_df %>% filter(!(is_weekend==TRUE | trip_distance > 2))
r_df %>% filter(is_weekend==FALSE, trip_distance <= 2)
```
A useful short-hand for is `x %in% y`. This will select every row where `x` is one of the values in `y`
```{r eval=FALSE}
r_df %>% filter(as.Date(pickup_datetime) %in% c(as.Date('2017-01-15'), as.Date('2017-01-16')))
# same as
r_df %>% filter(as.Date(pickup_datetime)==as.Date('2017-01-15') | as.Date(pickup_datetime)==as.Date('2017-01-16'))
```
Source: https://r4ds.had.co.nz/transform.html#missing-values-1
### Pandas
In Pandas we can either use the indexing approach
```{python, eval=FALSE}
pd_df[(pd_df.is_weekend==True) & (pd_df.trip_distance > 2)]
```
Or try out the handy query API
```{python, eval=FALSE}
pd_df.query("is_weekend==True & trip_distance > 2")
```
Show trips that have `pickup_datetime` in Jan 15th and Jan 16th
```{python, eval=FALSE}
pd_df.loc[(pd_df['pickup_datetime'] >= '2017-01-15') & (pd_df['pickup_datetime'] < '2017-01-17')]
```
`.isin()`:
* For "IN" use: something.isin(somewhere).
* For "NOT IN": ~something.isin(somewhere).
Show trips that not happened in the 3rd, 5th, and 6th of the week.
```{python, eval=FALSE}
pd_df.loc[~pd_df.day_of_week.isin([3,5,6])]
```
\
\
## Delete / Add column(s)
Sometimes we would like to vertically subset the dataframe or add new columns to the dataframe
### Dplyr
We use the the function `mutate()` to add column(s).\
Lets say we want to add a column named `total_payment` which is the sum of `fare_amount` and `tip_amount` and a new column `total_payment_per_mile` which is `total_payment` divided by `trip_distance`.
```{r eval=FALSE}
r_df <- r_df %>% mutate(total_payment = fare_amount + tip_amount,
total_payment_per_mile = total_payment / trip_distance)
```
We use the the function `select()` to drop column(s).\
Drop the newly added two columns`is_weekend` and `pickup_datetime`
```{r eval=FALSE}
r_df <- r_df %>% select(-c(total_payment, total_payment_per_mile))
```
### Pandas
Add column(s)
```{python, eval=FALSE}
pd_df['total_payment'] = pd_df.fare_amount + pd_df.tip_amount
pd_df['total_payment_per_mile'] = pd_df.total_payment / pd_df.trip_distance
```
Drop column(s) in Pandas use `drop()`. `axis=1` is used to indicate column-wise operations. Set `inplace=True` to overwrite the current dataframe.
```{python, eval=FALSE}
pd_df.drop(['total_payment', 'total_payment_per_mile'], axis=1, inplace=True)
```
\
\
## Rename Columns
If we want to rename two features; one from `trip_distance` to `trip_dist` and the other from `fare_amount` to `fare_amt`. In Pandas we supply a dictionary that says `{'trip_distance': 'trip_dist', 'fare_amount': 'fare_amt'}` and in Dplyr it is the exact opposite way `trip_dist=trip_distance` and `fare_amt = fare_amount`.\
### Dplyr
We use the function `rename()` in dplyr
```{r}
r_df <- r_df %>% rename(trip_dist = trip_distance, fare_amt = fare_amount)
```
### Pandas
We use the function `rename()` in pandas
```{python, eval=FALSE}
pd_df.rename(columns = {'trip_distance': 'trip_dist', 'fare_amount': 'fare_amt'}, inplace = True)
```
\
\
## Change order of columns
### Dplyr
We use the function `relocate()`, and `.before` or `.after` to place a column before or after another specified column.\
Move the column `day_of_week` after `dropoff_datetime`
```{r}
r_df <- r_df %>% relocate(day_of_week, .after = dropoff_datetime)
```
### Pandas
Use the function `reindex()` to change order of columns in pandas
```{python, eval=FALSE}
pd_df.reindex(['pickup_datetime','dropoff_datetime','day_of_week','trip_distance','fare_amount','tip_amount','payment_type', 'is_weekend'], axis=1)
```
\
\
## Change cell based on conditions
We want to change `fare_amount` based on the `trip_distance`. Let's say if `trip_distance < 2`, then `fare_amount*1.2`; if `2 <= trip_distance < 5`, then `fare_amount*1.5`; if `5 <= trip_distance < 10`, then `fare_amount*1.7`; else `fare_amount*2`
### Dplyr
We use the the function `mutate()` along with the function `case_when`
```{r eval=FALSE}
r_df <- r_df %>% mutate(fare_amount = case_when(trip_distance < 2 ~ fare_amount*1.2,
trip_distance >= 2 & trip_distance < 5 ~ fare_amount*1.5,
trip_distance >= 5 & trip_distance < 10 ~ fare_amount*1.7,
TRUE ~ fare_amount*2))
```
### Pandas
The way we do python requires more work.
Each `mask` represents one condition, and we change cell values based on conditions.
```{python, eval=FALSE}
mask1 = pd_df.trip_distance < 2
mask2 = (pd_df.trip_distance >= 2) & (pd_df.trip_distance < 5)
mask3 = (pd_df.trip_distance >= 5) & (pd_df.trip_distance < 10)
mask4 = pd_df.trip_distance >= 10
pd_df.fare_amount[mask1] = (pd_df.fare_amount[mask1])*1.2
pd_df.fare_amount[mask2] = (pd_df.fare_amount[mask2])*1.5
pd_df.fare_amount[mask3] = (pd_df.fare_amount[mask3])*1.7
pd_df.fare_amount[mask4] = (pd_df.fare_amount[mask4])*2
```
\
\
## Distinct values per column
Find distinct/unique values in a column.
### Dplyr
We use the the function `distinct()`
```{r eval=FALSE}
r_df %>% select(day_of_week) %>% distinct()
```
### Pandas
We use the `unique()` method
```{python, eval=FALSE}
pd_df.day_of_week.unique()
```
\
\
## Sort by values
Sort the dataframe by certain feature. The default for both Dplyr and Pandas is in ascending order.
### Dplyr
We use the the function `arrange()`. \
Sort the dataframe by `tip_amount` in descending order.
```{r eval=FALSE}
r_df %>% arrange(desc(tip_amount))
```
### Pandas
We use the `sort_values()` method.
```{python, eval=FALSE}
pd_df.sort_values('tip_amount', ascending=False)
```
\
\
## Count number of records per group
Finding count for number of entries for certain groups
### Dplyr
We first use `group_by()` and then count entries using `count()` or `tally()`
```{r eval=FALSE}
r_df %>% group_by(day_of_week) %>% count()
r_df %>% group_by(day_of_week) %>% tally()
r_df %>% group_by(day_of_week) %>% summarise(count = n())
```
### Pandas
We use the `value_counts()` method
```{python, eval=FALSE}
pd_df.value_counts('day_of_week')
pd_df.day_of_week.value_counts()
```
\
\
## Summarize / Aggregate
A groupby operation involves some combination of splitting the object, applying a function, and combining the results. This can be used to group large amounts of data and compute operations on these groups.
### Dplyr
**Aggregate over entire columns** when we want to create descriptive statistics for one or multiple columns. We use `summarise()`
```{r eval=FALSE}
r_df %>% summarise(across(everything(), mean))
r_df %>% summarise(across(everything(), min))
```
Summarize / Aggregate by group when we want to have aggregate statistics for certain groups. We use the function `group_by()` along with `summarise()` or `summarise_all()`.\
\
**Aggregate by group for all columns.**\
Find all mean and max values for every features for each day of the week. Remove NA during calculation since otherwise we may get NA as the result which is not meaningful.
```{r eval=FALSE}
r_df %>% group_by(day_of_week) %>% summarise_all(list(mean, max), na.rm=TRUE)
```
**Aggregate by group for a specific column.**\
Find mean and max values for `trip_distance` for each day of the week.\
It will be a good idea for always setting `na.rm=TRUE` if we do not know whether we have NA values in the column that we want to find mean/max/min/... In our case we do not really need `na.rm=TRUE` because there is no NA value under feature `trip_distance`.
```{r eval=FALSE}
r_df %>% group_by(day_of_week) %>% summarise(mean=mean(trip_distance), max=max(trip_distance))
```
### Pandas
Get mean and min for each column
```{python, eval=FALSE}
pd_df.agg(['mean', 'min'])
```
Aggregate by group for all columns. We use `groupby()` along with `agg()`
```{python, eval=FALSE}
pd_df.groupby(['day_of_week']).agg(['mean', 'max'])
```
Aggregate by group for specific column. We use `groupby()` along with `agg()`
```{python, eval=FALSE}
pd_df.groupby(['day_of_week']).agg({'trip_distance':['mean', 'max']})
```
\
\
## Slicing
Indexing in Python starts at 0 and in R at 1.
### Dplyr
**Slicing by row** when we know the exact row number you want to extract.\
Select 20th row to 25th row (inclusive)
```{r eval=FALSE}
r_df %>% slice(c(20:25))
```
Find the first 3 records using the function `slice_head()`
```{r eval=FALSE}
r_df %>% slice_head(n = 3)
```
Find the the last 1% of total records using the function `slice_tail()`
```{r eval=FALSE}
r_df %>% slice_tail(prop = 0.01)
```
**Slicing top and bottom records by value** \
Find the 5 records with the highest `tip_amount` using the function `slice_max()`
```{r eval=FALSE}
r_df %>% slice_max(tip_amount, n = 5)
```
Find the 1% of total records with the lowest `tip_amount` using the function `slice_min()`
```{r eval=FALSE}
r_df %>% slice_min(tip_amount, prop = 0.01)
```
**Slicing top and bottom records by value and group**\
Find the 2 records with the highest `tip_amount` per `day_of_week` using the function `slice_max()` along with `group_by()`.\
`with_ties` specify if records with equal values should be included or not.
```{r eval=FALSE}
r_df %>% group_by(day_of_week) %>% slice_max(tip_amount, n = 2)
```
Find the 1% of total records with lowest the `tip_amount` per `day_of_week` using the function `slice_min()` along with `group_by()`
```{r eval=FALSE}
r_df %>% group_by(day_of_week) %>% slice_min(tip_amount, prop = 0.01, with_ties = FALSE)
```
**Sampling-Slicing random records (per group)**\
Sampling can be done on the entire dataset or equally distributed based on a group.\
Use the function `slice_sample()` by specifying `n` for a fixed amount or `prop` for a proportion of records. By default, `replace = FALSE`\
Return 20 random samples without replacement
```{r eval=FALSE}
r_df %>% slice_sample(n = 20)
```
Return 10% of total records with replacement
```{r eval=FALSE}
r_df %>% slice_sample(prop = 0.1, replace=TRUE)
```
Return 10% of total records split by group with replacement
```{r eval=FALSE}
r_df %>% group_by(is_weekend) %>% slice_sample(prop = 0.1, replace=TRUE)
```
### Pandas
**Slicing by row** by using `.iloc`
Select 20th row to 25th row (inclusive). Note that Python index start at 0.
```{python, eval=FALSE}
pd_df.iloc[range(19, 25)]
```
Use `head()` or `tail()` to get a fixed amount of records from top or bottom of the dataframe. Unlike dplyr, we have to do some computations if we want to extract a proportion
```{python, eval=FALSE}
pd_df.head(n = 5)
pd_df.tail(n = len(pd_df)*0.01)
```
**Slicing top and bottom records by value** using `nlargest()` or `nsmallest()`.Unlike dplyr, we first sort the column and then do some computations if we want to extract a proportion
```{python, eval=FALSE}
pd_df.nlargest(5, 'tip_amount')
pd_df.sort_values('tip_amount', ascending=False).head(int(len(pd_df)*0.01))
```
**Slicing top and bottom records by value and group** using `groupby()`, `nlargest()` or `nsmallest()`, and `lambda` function.\
Find the 2 records with the highest `tip_amount` per `day_of_week`
```{python, eval=FALSE}
pd_df.groupby('day_of_week',group_keys=False).apply(lambda x: x.nlargest(2, 'tip_amount'))
```
Find the 1% of total records with lowest the `tip_amount` per `day_of_week`
```{python, eval=FALSE}
pd_df.groupby('day_of_week',group_keys=False).apply(lambda x: x.nsmallest(int(len(x) * 0.01), 'tip_amount'))
```
**Sampling-Slicing random records (per group)**
```{python, eval=FALSE}
pd_df.sample(n=20)
pd_df.sample(frac=0.1, replace=True)
pd_df.groupby('is_weekend').sample(frac=0.1, replace=True)
```
\
\
## Join two tables
Suppose we now have 2 dataframes `A` and `B`, both have common column called `key`
### Dplyr
`inner_join()`, `left_join()`, `right_join()`, `full_join()`
```{r eval=FALSE}
A %>% inner_join(B, by="key")
A %>% left_join(B, by="key")
A %>% right_join(B, by="key")
A %>% full_join(B, by="key")
```
### Pandas
`merge` function can perform all join operations by specifying how (outer, inner, left, right) and on which key
```{python, eval=FALSE}
pd.merge(A, B, how="inner", on="key")
pd.merge(A, B, how="left", on="key")
pd.merge(A, B, how="right", on="key")
pd.merge(A, B, how="outer", on="key")
```
\
\
## Bind Rows and Columns
Suppose we now have 2 dataframes `A` and `B`
### Dplyr
`bind_rows()` and `bind_columns()`.
Automatically filled NA if values don’t appear in one of the dataframes.
```{r eval=FALSE}
A %>% bind_rows(B)
A %>% bind_columns(B)
```
### Pandas
`concat()` method can concatenates dataframes by rows (default `axis = 0`) or by columns (`axis = 1`).
Automatically filled NA if values don’t appear in one of the dataframes.
```{python, eval=FALSE}
pd.concat([A,B], axis=1)
```
\
\