forked from mdolab/AerostructuralOptBenchmark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathperformanceCalc.py
548 lines (452 loc) · 21.5 KB
/
performanceCalc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
"""
==============================================================================
Basic aircraft mission performance calculations
==============================================================================
@File : performanceCalc.py
@Date : 2023/04/26
@Author : Alasdair Christison Gray
@Description :
"""
# ==============================================================================
# Standard Python modules
# ==============================================================================
# ==============================================================================
# External Python modules
# ==============================================================================
import openmdao.api as om
import numpy as np
# ==============================================================================
# Extension modules
# ==============================================================================
# ==============================================================================
# Individual components
# ==============================================================================
# --- Mass calculation components ---
def computeSegmentInitMass(lift, drag, finalMass, R, tsfc, climbAngle, v):
"""Compute the mass at the start of a segment given the mass at the end of the segment using the Breguet range equation
Parameters
----------
lift : float/complex
Lift force
drag : float/complex
drag force
finalWeight : float/complex
Weight at end of segment
R : float/complex
Segment range
tsfc : float/complex
Thrust specific fuel consumption
climbAngle : float/complex
CLimb angle of segment in radians
v : float/complex
Flight speed
"""
LoverD = np.sqrt((lift / drag) ** 2)
initMass = finalMass * np.exp(R * tsfc / v * (np.cos(climbAngle) / LoverD + np.sin(climbAngle)))
return initMass
class BreguetRangeSegmentComp(om.ExplicitComponent):
def initialize(self):
self.options.declare("R", desc="Segment range")
self.options.declare("tsfc", desc="Thrust-specific fuel consumption")
self.options.declare("climbAngle", desc="Climb angle of segment")
self.options.declare("v", desc="Flight speed")
def setup(self):
self.add_input("lift", shape=1, units="N")
self.add_input("drag", shape=1, units="N")
self.add_input("finalMass", shape=1, units="kg")
self.add_output("initMass", shape=1, units="kg")
def setup_partials(self):
self.declare_partials("*", "*", method="cs")
def compute(self, inputs, outputs):
outputs["initMass"] = computeSegmentInitMass(
lift=inputs["lift"],
drag=inputs["drag"],
finalMass=inputs["finalMass"],
R=self.options["R"],
tsfc=self.options["tsfc"],
climbAngle=self.options["climbAngle"],
v=self.options["v"],
)
# if self.comm.rank == 0:
# print(f"SegmentInitMass = {outputs['initMass'][0]: 11.7e}")
def elhamRegression(wingboxMass):
# Estimate total mass of a wing based on mass of single wingbox using Elham's EMWET regression (see https://doi.org/10.1017/s0001924000008563)
return 10.147 * wingboxMass**0.8162
class WingMassRegressionComp(om.ExplicitComponent):
def setup(self):
self.add_input("wingboxMass", shape=1, units="kg")
self.add_output("wingMass", shape=1, units="kg")
def setup_partials(self):
self.declare_partials(of="*", wrt="*")
def compute(self, inputs, outputs):
outputs["wingMass"] = elhamRegression(inputs["wingboxMass"])
# if self.comm.rank == 0:
# print(f"wingMass = {outputs['wingMass'][0]: 11.7e}")
def compute_partials(self, inputs, partials):
partials["wingMass", "wingboxMass"] = 10.147 * 0.8162 * inputs["wingboxMass"] ** (0.8162 - 1.0)
def computeLandingGrossMass(wingMass, payloadMass, airframeMass, reserveFuelMass):
"""Compute the landing mass of an aircraft
Parameters
----------
wingMass : float/complex
Total mass of one wing
payloadMass : float/complex
Mass of the payload
airframeMass : float/complex
Mass of the airframe excluding the wings (e.g fuselage, engines, systems weight)
reserveFuelMass : float/complex
Reserve fuel mass that needs to be left over at the end of the mission
Returns
-------
float/complex
Aircraft landing gross mass
"""
return 2 * wingMass + payloadMass + airframeMass + reserveFuelMass
class LandingGrossMass(om.ExplicitComponent):
def initialize(self):
self.options.declare("payloadMass", desc="Mass of the payload")
self.options.declare(
"airframeMass",
types=float,
desc="Mass of the airframe excluding the wings (e.g fuselage, engines, systems weight)",
)
self.options.declare(
"reserveFuelMass",
types=float,
desc="Reserve fuel mass that needs to be left over at the end of the mission",
)
def setup(self):
self.add_input("wingMass", shape=1, units="kg")
self.add_output("landingGrossMass", shape=1, units="kg")
def setup_partials(self):
self.declare_partials(of="landingGrossMass", wrt="wingMass", val=2.0)
def compute(self, inputs, outputs):
opt = self.options
outputs["landingGrossMass"] = computeLandingGrossMass(
wingMass=inputs["wingMass"],
payloadMass=opt["payloadMass"],
airframeMass=opt["airframeMass"],
reserveFuelMass=opt["reserveFuelMass"],
)
# if self.comm.rank == 0:
# print(f"landingGrossMass = {outputs['landingGrossMass'][0]: 11.7e}")
def computeMidSegmentMass(initialMass, finalMass):
"""Compute the "mid-segment" Mass for a given segment
Because the rate of fuel-burn in a segment is not constant,
a geometric average of the start and end Massses is used to
estimate the Mass at the mid-point of the segment
Parameters
----------
initialMass : float/complex
Segment start mass
finalMass : float/complex
Segment end mass
"""
return np.sqrt(finalMass * initialMass)
class MidSegmentMassComp(om.ExplicitComponent):
def setup(self):
self.add_input("initialMass", shape=1, units="kg")
self.add_input("finalMass", shape=1, units="kg")
self.add_output("midSegmentMass", shape=1, units="kg")
def setup_partials(self):
self.declare_partials(of="*", wrt="*")
def compute(self, inputs, outputs):
outputs["midSegmentMass"] = computeMidSegmentMass(
initialMass=inputs["initialMass"], finalMass=inputs["finalMass"]
)
# if self.comm.rank == 0:
# print(f"midSegmentMass = {outputs['midSegmentMass'][0]: 11.7e}")
def compute_partials(self, inputs, partials):
partials["midSegmentMass", "initialMass"] = (
0.5 * inputs["finalMass"] / np.sqrt(inputs["finalMass"] * inputs["initialMass"])
)
partials["midSegmentMass", "finalMass"] = (
0.5 * inputs["initialMass"] / np.sqrt(inputs["finalMass"] * inputs["initialMass"])
)
def computeCorrectedDrag(drag, extraDragCoeff, wingArea, dynPressure):
return drag + extraDragCoeff * wingArea * dynPressure
# --- Lift and drag calculations ---
class CorrectedDragComp(om.ExplicitComponent):
def initialize(self):
self.options.declare("extraDragCoeff", types=float, desc="Extra drag coefficient")
self.options.declare("wingArea", types=float, desc="Wing area")
self.options.declare("dynPressure", types=float, desc="Dynamic pressure")
def setup(self):
self.add_input("drag", shape=1, units="N")
self.add_output("correctedDrag", shape=1, units="N")
def setup_partials(self):
self.declare_partials(of="correctedDrag", wrt="drag", val=1.0)
def compute(self, inputs, outputs):
outputs["correctedDrag"] = computeCorrectedDrag(
drag=inputs["drag"],
extraDragCoeff=self.options["extraDragCoeff"],
wingArea=self.options["wingArea"],
dynPressure=self.options["dynPressure"],
)
# if self.comm.rank == 0:
# print(f"correctedDrag = {outputs['correctedDrag'][0]: 11.7e}")
class LiftConstraintComp(om.ExplicitComponent):
def initialize(self):
self.options.declare("loadFactor", types=float, desc="Load factor")
self.options.declare("fuelFraction", types=float, desc="Mass of the aircraft", default=None)
def setup(self):
self.add_input("lift", shape=1, units="N")
self.add_input("mass", shape=1, units="kg")
if self.options["fuelFraction"] is not None:
self.add_input("fuelMass", shape=1, units="kg")
self.add_output("liftDiff", shape=1, units="N")
def setup_partials(self):
self.declare_partials(of="liftDiff", wrt="lift", val=2.0)
self.declare_partials(of="liftDiff", wrt="mass", val=-self.options["loadFactor"] * 9.81)
if self.options["fuelFraction"] is not None:
self.declare_partials(of="liftDiff", wrt="fuelMass", val=-self.options["loadFactor"] * 9.81)
def compute(self, inputs, outputs):
mass = inputs["mass"]
if self.options["fuelFraction"] is not None:
mass += inputs["fuelMass"] * self.options["fuelFraction"]
outputs["liftDiff"] = 2.0 * inputs["lift"] - mass * self.options["loadFactor"] * 9.81
# if self.comm.rank == 0:
# print(f"liftDiff = {outputs['liftDiff'][0]: 11.7e}")
# --- Misc ---
def computeFuelTankUsage(fuelBurn, wingboxVolume, reserveFuelMass, fuelDensity, wingboxVolumeFraction, auxTankVolume):
"""Compute the percentage of available fuel tank volume used during a mission
Parameters
----------
fuelBurn : float/complex
Mass of fuel burned during mission
wingboxVolume : float/complex
Volume of one wingbox
reserveFuelMass : float/complex
Mass of reserve fuel required at end of mission
fuelDensity : float/complex
Density of fuel
wingboxVolumeFraction : float/complex
Fraction of the wingbox which assumed to be fuel tank
auxTankVolume : float/complex
Volume of auxiliary fuel tanks not in wingbox
Returns
-------
float/complex
Fuel volume margin, 1.0 = Completely full, 0.0 = Completely empty
"""
boxVolume = 2.0 * wingboxVolumeFraction * wingboxVolume
fuelVolume = (fuelBurn + reserveFuelMass) / fuelDensity - auxTankVolume
return fuelVolume / boxVolume
class FuelTankUsageComp(om.ExplicitComponent):
def initialize(self):
self.options.declare("reserveFuelMass", desc="Mass of reserve fuel required at end of mission")
self.options.declare("fuelDensity", desc="Density of fuel")
self.options.declare("wingboxVolumeFraction", desc="Fraction of the wingbox which assumed to be fuel tank")
self.options.declare("auxTankVolume", desc="Volume of auxiliary fuel tanks not in wingbox")
def setup(self):
self.add_input("fuelBurn", shape=1, units="kg")
self.add_input("wingboxVolume", shape=1, units="m**3")
self.add_output("fuelTankUsage", shape=1)
def setup_partials(self):
self.declare_partials("*", "*", method="cs")
def compute(self, inputs, outputs):
outputs["fuelTankUsage"] = computeFuelTankUsage(
fuelBurn=inputs["fuelBurn"],
wingboxVolume=inputs["wingboxVolume"],
reserveFuelMass=self.options["reserveFuelMass"],
fuelDensity=self.options["fuelDensity"],
wingboxVolumeFraction=self.options["wingboxVolumeFraction"],
auxTankVolume=self.options["auxTankVolume"],
)
# if self.comm.rank == 0:
# print(f"fuelTankUsage = {outputs['fuelTankUsage'][0]: 11.7e}")
def computeWingLoading(wingArea, MTOM):
"""Compute the wing loading of an aircraft
Parameters
----------
MTOM : float/complex
Aircraft maximum take-off mass
wingArea : float/complex
Planform area of a single wing
Returns
-------
float/complex
Wing loading in units of mass/area
"""
return MTOM / (2.0 * wingArea)
class WingLoadingComp(om.ExplicitComponent):
def setup(self):
self.add_input("wingArea", shape=1, units="m**2")
self.add_input("MTOM", shape=1, units="kg")
self.add_output("wingLoading", shape=1, units="kg/m**2")
def setup_partials(self):
self.declare_partials(of="*", wrt="*")
def compute(self, inputs, outputs):
outputs["wingLoading"] = computeWingLoading(wingArea=inputs["wingArea"], MTOM=inputs["MTOM"])
# if self.comm.rank == 0:
# print(f"wingLoading = {outputs['wingLoading'][0]: 11.7e}")
def compute_partials(self, inputs, partials):
partials["wingLoading", "wingArea"] = -inputs["MTOM"] / (2.0 * inputs["wingArea"] ** 2)
partials["wingLoading", "MTOM"] = 1.0 / (2.0 * inputs["wingArea"])
# ==============================================================================
# OpenMDAO group combining components needed to compute aircraft empty mass
# ==============================================================================
class AirframeMassGroup(om.Group):
def initialize(self):
self.options.declare("aircraftSpecs", types=dict)
self.options.declare("flightPoints", types=list)
def setup(self):
self.specs = self.options["aircraftSpecs"]
self.flightPoints = self.options["flightPoints"]
# --- Compute wing mass from wingbox mass ---
wingMassComp = WingMassRegressionComp()
self.add_subsystem("WingMassRegression", wingMassComp, promotes=["*"])
# --- Compute landing gross mass ---
LGMComp = LandingGrossMass(
payloadMass=self.specs["payloadMass"],
airframeMass=self.specs["airframeMass"],
reserveFuelMass=self.specs["reserveFuelMass"],
)
self.add_subsystem("MassSummation", LGMComp, promotes=["*"])
# ==============================================================================
# OpenMDAO group combining components needed to compute aircraft fuel burn
# ==============================================================================
class FuelBurnGroup(om.Group):
def initialize(self):
self.options.declare("aircraftSpecs", types=dict)
self.options.declare("flightPoints", types=list)
def setup(self):
self.specs = self.options["aircraftSpecs"]
self.flightPoints = self.options["flightPoints"]
# --- Drag correction ---
addedDragComp = CorrectedDragComp(
extraDragCoeff=self.specs["extraDragCoeff"],
wingArea=self.specs["refArea"],
dynPressure=self.flightPoints[0].q,
)
self.add_subsystem(
"dragCorrection", addedDragComp, promotes_inputs=[("drag", "cruiseDrag")], promotes_outputs=["*"]
)
# --- Breguet range calculations ---
# First compute the cruise fuelburn to go from the landing gross mass to the weight at the start of cruise
cruiseFuelburnComp = BreguetRangeSegmentComp(
R=self.specs["range"],
tsfc=self.specs["tsfc"],
climbAngle=0.0,
v=self.flightPoints[0].V,
)
self.add_subsystem(
"CruiseFuelBurn",
cruiseFuelburnComp,
promotes_outputs=[("initMass", "cruiseStartMass")],
promotes_inputs=[("lift", "cruiseLift"), ("finalMass", "landingGrossMass")],
)
self.connect("correctedDrag", "CruiseFuelBurn.drag")
# Then compute the takeoff mass by using the cruise start mass as the final mass for the climb segment
climbFuelburnComp = BreguetRangeSegmentComp(
R=self.specs["climbRange"],
tsfc=self.specs["tsfc"],
climbAngle=self.specs["climbAngle"],
v=self.specs["climbSpeed"],
)
self.add_subsystem(
"climbFuelBurn",
climbFuelburnComp,
promotes_outputs=[("initMass", "TakeoffMass")],
promotes_inputs=[("lift", "cruiseLift")],
)
self.connect("cruiseStartMass", "climbFuelBurn.finalMass")
self.connect("correctedDrag", "climbFuelBurn.drag")
# Finally compute the fuelburn as the difference between the takeoff mass and the landing gross mass
totalFuelBurnComp = om.AddSubtractComp(
output_name="TotalFuelBurn", input_names=["TakeoffMass", "landingGrossMass"], scaling_factors=[1.0, -1.0]
)
self.add_subsystem("totalFuelBurnComp", totalFuelBurnComp, promotes=["*"])
# ==============================================================================
# Top level group combining all performance components/groups
# ==============================================================================
class AircraftPerformanceGroup(om.Group):
def initialize(self):
self.options.declare("aircraftSpecs", types=dict)
self.options.declare("flightPoints", types=list)
def setup(self):
self.specs = self.options["aircraftSpecs"]
self.flightPoints = self.options["flightPoints"]
massComp = AirframeMassGroup(
aircraftSpecs=self.specs,
flightPoints=self.flightPoints,
)
self.add_subsystem("airframeMass", massComp, promotes=["landingGrossMass", "wingboxMass"])
# We can only compute the fuel burn, mid cruise mass, wing loading, and fuel volume if we have a cruise point
hasCruisePoint = any("cruise" in flightPoint.name.lower() for flightPoint in self.flightPoints)
if hasCruisePoint:
fuelBurnComp = FuelBurnGroup(
aircraftSpecs=self.specs,
flightPoints=self.flightPoints,
)
self.add_subsystem(
"fuelBurn",
fuelBurnComp,
promotes_inputs=["cruiseDrag", "cruiseLift", "landingGrossMass"],
promotes_outputs=["TotalFuelBurn", "cruiseStartMass", "TakeoffMass"],
)
# --- Compute the mid-cruise mass ---
cruiseMass = MidSegmentMassComp()
self.add_subsystem("midCruiseMass", cruiseMass, promotes_outputs=[("midSegmentMass", "midCruiseMass")])
self.connect("landingGrossMass", "midCruiseMass.finalMass")
self.connect("cruiseStartMass", "midCruiseMass.initialMass")
# --- Wingbox volume computation ---
fuelVolumeComp = FuelTankUsageComp(
reserveFuelMass=self.specs["reserveFuelMass"],
fuelDensity=self.specs["fuelDensity"],
wingboxVolumeFraction=self.specs["wingboxFuelVolumeFraction"],
auxTankVolume=self.specs["auxFuelVolume"],
)
self.add_subsystem(
"fuelVolumeComp", fuelVolumeComp, promotes_outputs=["*"], promotes_inputs=["wingboxVolume"]
)
self.connect("TotalFuelBurn", "fuelVolumeComp.fuelBurn")
# --- Wing loading constraint ---
wingLoadingComp = WingLoadingComp()
self.add_subsystem("wingLoadingComp", wingLoadingComp, promotes_outputs=["*"], promotes_inputs=["wingArea"])
self.connect("TakeoffMass", "wingLoadingComp.MTOM")
# --- Add a lift constrain for each flight point ---
for flightPoint in self.flightPoints:
name = flightPoint.name
hasFuelInput = False
if "cruise" in flightPoint.name.lower():
# This is a cruise flight point, so the target lift is the mid-cruise weight
flightPointMassVariable = "midCruiseMass"
LiftConstraint = LiftConstraintComp(loadFactor=flightPoint.loadFactor)
else:
# This is a maneuver flight point, so the target lift is the landing gross weight + a fraction of the fuel weight
hasFuelInput = flightPoint.fuelFraction != 0
flightPointMassVariable = "landingGrossMass"
LiftConstraint = LiftConstraintComp(
loadFactor=flightPoint.loadFactor, fuelFraction=flightPoint.fuelFraction if hasFuelInput else None
)
self.add_subsystem(
f"{name}LiftConstraint",
LiftConstraint,
promotes_inputs=[("lift", f"{name}Lift")],
promotes_outputs=[("liftDiff", f"{name}LiftDiff")],
)
self.connect(flightPointMassVariable, f"{name}LiftConstraint.mass")
if hasFuelInput:
self.connect("TotalFuelBurn", f"{name}LiftConstraint.fuelMass")
# Test the performance group derivatives
if __name__ == "__main__":
import os
import sys
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), "../AircraftSpecs"))
from AircraftSpecs.STWSpecs import aircraftSpecs # noqa: E402
from AircraftSpecs.STWFlightPoints import flightPointSets # noqa: E402
prob = om.Problem()
prob.model = AircraftPerformanceGroup(aircraftSpecs=aircraftSpecs, flightPoints=flightPointSets["3pt"])
prob.setup()
# Set some reasonable input values
prob.set_val("wingboxMass", 1000.0, units="kg")
prob.set_val("wingboxVolume", 6.0, units="m**3")
prob.set_val("wingArea", aircraftSpecs["refArea"], units="m**2")
for fp in flightPointSets["3pt"]:
prob.set_val(f"{fp.name}Lift", fp.loadFactor * aircraftSpecs["refMTOW"] * 9.81 / 2.0)
prob.set_val("cruiseDrag", aircraftSpecs["refMTOW"] * 9.81 / 2.0 / 20)
prob.run_model()
prob.model.list_outputs()
prob.check_partials(compact_print=True, form="central", step=1e-6)
om.n2(prob, show_browser=True)