-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspectrum.py
515 lines (380 loc) · 19 KB
/
spectrum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
import numpy as np
import matplotlib.pyplot as plt
import scipy
from astropy import modeling
import gaussfit
from gaussfit import Peak
from util import PlotFactory, ScatterFactory
class Spectrum:
"""
This is a class that represents each white spot on the image.
"""
spectrum_number = 1
def __init__(self, xvalues, yvalues, fits_file):
import util
# These variables must be lists so that we can add spectra. They will
# be turned into numpy arrays after we call the `build` function.
self.xvalues = list(xvalues)
self.yvalues = list(yvalues)
self.fits_file = fits_file
self.image_rows = self.fits_file.image_data[0]
self.image_cols = self.fits_file.image_data[1]
# Peaks for which a Gaussian was unable to be fit
self.unfittable_peaks = []
# In order to establish a width profile, each fitted Gaussian also
# contains a standard deviation/width value that is stored and fitted
# a spline.
self.peak_width_spline_function = None
self.peak_width_spline_rms = None
self.widths = None
# When plotting the brightness of the spectrum, we are going to need
# to store relevant information, which will be in the following varaible
# This should be of type SpectrumBrightnessPlotData and will be updated
# in the __remove_overlapping_spectra method.
self.spec_scatter_fact = ScatterFactory()
self.spec_plot_fact = PlotFactory()
Spectrum.spectrum_number += 1
def add_peak(self, x, y):
"""
Adds a peak to the spectrum.
"""
self.xvalues.append(x)
self.yvalues.append(y)
def build_prepare(self):
"""
THis function initializes the necessary values to prepare before the
build process commences. These initialation variables are useful later
on.
"""
import util
# Sorting the x and y values
self.xvalues, self.yvalues = util.sortxy(self.xvalues, self.yvalues)
# Retaining a list of the original, unmodified x and y values
# This is for cases where the spectrum is cut off prematurely. In such
# cases, we want to retain this information so that we can re-cut the
# spectrum to the parabola.
self.ox, self.oy = list(self.xvalues), list(self.yvalues)
# Ensuring that we keep track of the integer yvalues
# This is useful for when we want to plot the brightness vs. x value of
# the peaks.
self.int_xvalues = np.array(self.xvalues)
self.int_yvalues = np.array(self.yvalues)
assert len(self.int_xvalues) == len(self.int_yvalues)
# Ensuring that the spectrum has a reasonable size...
build_success = util.ensure_min_spec_length(self.xvalues, self.yvalues)
if not build_success:
return False
# Run the remove overlapping spectra method, which will update the
# self.int_xvalues and self.int_yvalues variables. We will use those
# to update the self.xvalues and self.yvalues variables.
self.__remove_overlapping_spectrum()
return True
def build(self):
import util
self.xvalues, self.yvalues = self.int_xvalues, self.int_yvalues
xlen, ylen = len(self.xvalues), len(self.yvalues)
# Ensuring that the spectrum has a reasonable size...
build_success = util.ensure_min_spec_length(self.xvalues, self.yvalues)
if not build_success:
return False
# Ensuring no duplicates and ensuring strictly increasing
# assert np.diff(self.xvalues).all() <= 0
# Adding a correctness check to ensure that the dimensions of each are correct.
if xlen != ylen:
raise ValueError("The dimensions of the xvalues and yvalues array are not the same; xlen: %d ylen: %d" % (xlen, ylen))
# Generating peaks after the spectrum is cleaned and narrowed
self.peaks = [Peak(x, y) for x, y in zip(self.xvalues, self.yvalues)]
# Fits a Gaussian to each of the peaks.
self.__fit_peak_gaussians()
# Removes outliers
self.__remove_outliers()
# After obtaining the true y values and narrowing the spectrum,
# we want to fit the spectrum with a UnivariateSpline, which is
# what this function does.
degree = 3
self.__fit_spectrum(np.arange(0, len(self.image_cols)), degree)
# This function fits a spline to the peak widths and generates an rms
# value.
self.__fit_peak_widths()
return True
def __fit_peak_gaussians(self):
"""
This function fits a Gaussian to each spectrum in the .fitsfile. Then,
it finds the center of the Gaussian and assigns it to the peak.true_center
parameter of each Peak object in each Spectrum.
"""
image = self.fits_file.image_data
image_height = image.shape[1]
print("Fitting gaussian...")
success_counter = 0
for peak in self.peaks:
y1 = peak.y
# This is just an arbitrary range that has been chosen.
# This might have to be tweaked for various spectra.
left_range = 4
right_range = 4
y0 = y1 - left_range
y2 = y1 + right_range
# Ensure that the ranges do not exceed the width and height of
# the image
if y0 <= 0: y0 = 0
if y2 >= image_height: y2 = image_height
rng = (y0, y2)
# This does the fitting and the peak.true_center setting.
show = False
success = gaussfit.fit_gaussian(self.fits_file, rng, peak,
show=show)
success_counter += success
if success_counter != len(self.peaks):
print("\nSpectrum %d had %d/%d points with a successful Gaussian fit." % (Spectrum.spectrum_number, success_counter, len(self.peaks)))
self.yvalues = np.array([peak.true_center for peak in self.peaks])
#############################################################
# This is for testing purposes only --- this code should be #
# deleted after testing is complete because no plotting sh- #
# ould be taking place here. #
#############################################################
# if Spectrum.spectrum_number in [21]:
# self.fits_file.plot_spectra(num_to_plot=Spectrum.spectrum_number,
# show=True, save=False)
# self.fits_file.plot_spectra_brightness()
# if spec_ind == len(self.spectra):
# self.plot_spectra(num_to_plot=spec_ind, save=True)
def plot(self, only_endpoints=True):
"""
Takes in an optional parameter `show` that shows the plot as well.
"""
size = 0.75
xvalues_to_plot = self.xvalues
yvalues_to_plot = self.yvalues
if only_endpoints:
xvalues_to_plot = [xvalues_to_plot[0], xvalues_to_plot[-1]]
yvalues_to_plot = [yvalues_to_plot[0], yvalues_to_plot[-1]]
scatter_plot = plt.scatter(xvalues_to_plot, yvalues_to_plot, s=size)
return scatter_plot
def __fit_spectrum(self, domain, degree):
"""
This function fits a polynomial of degree `degree` and saves
the output on the input domain. It then saves the RMS goodness of fit
value.
"""
import util
self.output, self.rms_value = util.fit_spline(self.xvalues, self.yvalues,
domain, degree=degree)
def plot_spectrum_brightness(self, num):
"""
Plots the brightness of each spectra against the xvalue.
"""
import util
plt.clf()
self.spec_scatter_fact.scatter()
self.spec_plot_fact.plot()
image_name = self.fits_file.get_file_name()
plt.title("-parabola/brightness vs. xvalues in %s, spectrum #: %d" % (image_name, num))
plt.xlabel("xpixel")
plt.ylabel("-parabola/brightness")
plt.show()
def plot_fit(self):
linewidth = 0.25
fit_plot = plt.plot(self.output, linewidth=linewidth)
return fit_plot
def __remove_outliers(self):
import util
sample_sizes = [10, 20, 50, 70, 100, 300]
self.xvalues, self.yvalues = util.sigma_clip(
self.xvalues, self.yvalues, sample_size=sample_sizes, sigma=3
)
def __remove_overlapping_spectrum(self):
"""
This routine removes the part of the spectrum on either side that is
responsible that overlaps. This way, we only use the middle spectrum for
our analysis. This routine works as follows:
1. It obtains the brightness vs. x plots for each spectrum.
2. It then uses a Savitzky-Golay filter to smooth the scatter.
3. It obtains the local maxima in the smoothed scatter. After finding
the local maxima, a parabola should be fit. The parabola will then be
divided by the brightness plot. The absolute minima in the resulting
plot can be used as the starting and ending points of the overlapping
spectra. There are 3 things on which to case.
a. One local maximum:
If there is only 1 local maximum, there is no need to cut the
spectrum. The spectrum starts and ends have been detected
appropriately.
b. 2 local maxima:
If there are 2 local maxima, there are 2 cases. If the 2 local
maxima are on the left side of the image, pick a point on the
right side of the brightness plot for which to fit the parabola.
Do the same on the opposite side if the maxima are on the
opposite half.
c. 3 local maxima:
If there are 3 local maxima, simply fit a parabola to all 3.
"""
import util
# Obtaining an array of brightness values for each spectrum
brightness_array = self.fits_file.image_data[self.int_yvalues, self.int_xvalues]
# This dictionary is for restoring the yvalues after the xvalues with
# pixels that are too bright are clipped out
brightness_dict = {x: y for (x, y) in zip(self.int_xvalues, self.int_yvalues)}
# Sigma clipping the brightness array to get rid of the extreme values
# Ensures that the next line restores the yvalues and that the x and y
# correspond. This clips away pixels that are much brigher than expected
clip_window = 100
self.int_xvalues, brightness_array = util.sigma_clip(self.int_xvalues,
brightness_array,
sample_size=clip_window)
self.int_yvalues = [brightness_dict[x] for x in self.int_xvalues]
# xvalues that will be used for plotting
to_plot_x = np.array(self.int_xvalues)
# Correctness check
assert len(self.int_xvalues) == len(self.int_yvalues)
assert len(self.int_xvalues) == len(brightness_array)
# Smoothing the brightness array
# Obtain window size --- a larger window size is associated with
# a smoother output
window_size = len(self.int_xvalues) // 6
if window_size % 2 == 0:
window_size -= 1
order = 3
smoothed_brightness = scipy.signal.savgol_filter(brightness_array,
window_size, order)
# Correctness check
assert len(self.int_xvalues) == len(self.int_yvalues)
assert len(self.int_xvalues) == len(brightness_array)
# Obtaining the minima of the smoothed function and the x indices of the
# minima
order = 100
max_extrema_indices = scipy.signal.argrelextrema(smoothed_brightness,
np.greater,
order=order)
# Obtaining the minima
max_extremax = self.int_xvalues[max_extrema_indices]
max_extrema = smoothed_brightness[max_extrema_indices]
# Additional correctness checks
assert len(smoothed_brightness) == len(self.int_xvalues)
# Correctness check
image_width = len(self.image_cols)
# If there are greater than 2 minima, keep removing the ones closest
# to the edges until there are exactly 2 left
max_extremax, max_extrema = util.sortxy(max_extremax, max_extrema)
# Correctness check
assert len(max_extremax) == len(max_extrema)
# Variables that are used for plotting...
num_max = len(max_extremax)
corrected_brightness = []
originalx = np.array(self.int_xvalues)
xmax_plot = []
brightnes_max_plot = []
divided_plot = []
parab_brightness = []
# If num_max > 3, then we've got cases that we haven't accounted for
assert num_max <= 3
length = len(self.int_xvalues)
if num_max == 3:
# Fits a parabola
parab_brightness,_ = util.fit_parabola(max_extremax, max_extrema, self.int_xvalues)
divided_plot = -parab_brightness / smoothed_brightness
# Finds the absolute minima in the first and second halves of the
# image
## Some correctness checkds before proceeding
assert length == len(self.int_xvalues)
assert length == len(divided_plot)
# Obtains the indices of the absolute minima of the first parameter
# in the range provided by the 2nd and 3rd parameter
min_left_ind = util.min_ind_range(divided_plot, 0, length//2)
min_right_ind = util.min_ind_range(divided_plot, length//2, length)
assert len(self.int_xvalues) == len(self.int_yvalues)
corrected_brightness = brightness_array[min_left_ind:min_right_ind]
xmax_plot = max_extremax
brightness_max_plot = max_extrema
self.int_xvalues = self.int_xvalues[min_left_ind:min_right_ind]
self.int_yvalues = self.int_yvalues[min_left_ind:min_right_ind]
elif num_max == 2:
halfway_point = (self.int_xvalues[-1] - self.int_xvalues[0]) / 2
halfway_ind = util.nearest_ind_to_val(self.int_xvalues, halfway_point)
if Spectrum.spectrum_number == 11: print("halfway_point:", halfway_point)
xmax = list(max_extremax)
brightness = list(max_extrema)
# Cases on whether there are any extrema whose x values are less
# than the halfway point or greater than the halfway point
parab_fit_range = 50
if np.average(max_extremax) < halfway_point:
# Left half
xmax.extend(self.int_xvalues[-parab_fit_range:])
brightness.extend(brightness_array[-parab_fit_range:])
parab_brightness,_ = util.fit_parabola(xmax, brightness, self.int_xvalues)
divided_plot = -parab_brightness / smoothed_brightness
startx_ind = util.min_ind_range(divided_plot, 0, halfway_ind)
# Setting all the quantities for plotting
corrected_brightness = brightness_array[startx_ind:]
self.int_xvalues = self.int_xvalues[startx_ind:]
self.int_yvalues = self.int_yvalues[startx_ind:]
elif np.average(max_extremax) > halfway_point:
xmax.extend(self.int_xvalues[:parab_fit_range])
brightness.extend(brightness_array[:parab_fit_range])
parab_brightness,_ = util.fit_parabola(xmax, brightness,
self.int_xvalues)
divided_plot = -parab_brightness / smoothed_brightness
endx_ind = util.min_ind_range(divided_plot, halfway_ind, length)
corrected_brightness = brightness_array[:endx_ind]
self.int_xvalues = self.int_xvalues[:endx_ind]
self.int_yvalues = self.int_yvalues[:endx_ind]
xmax_plot = xmax
brightness_max_plot = brightness
elif num_max == 1:
# Do nothing...
return
else: # num_max must be between 1 and 3
raise ValueError("num_max = %d. This case is not accounted for." % (num_max))
# self.spec_scatter_fact.add_scatter(originalx, brightness_array)
# self.spec_plot_fact.add_plot(originalx, parab_brightness, color="red")
# self.spec_scatter_fact.add_scatter(self.int_xvalues, corrected_brightness)
# self.spec_scatter_fact.add_scatter(xmax_plot, brightness_max_plot)
# self.spec_plot_fact.add_plot(originalx, divided_plot)
def __fit_peak_widths(self):
"""
For each peak, fits a spline to a plot to the function of the standard
deviation fitted Gaussian to the x value.
"""
import util
# self.widths = np.array([peak.width for peak in self.peaks])
self.widths = []
xvalues = []
# Ensuring that the peaks with unfittable Gaussians won't be included
for peak in self.peaks:
if peak.width == "failed":
self.unfittable_peaks.append(peak)
continue
self.widths.append(peak.width)
xvalues.append(peak.x)
self.widths = np.array(self.widths)
xvalues = np.array(xvalues)
# TODO: This should be replaced with the more abstract util.fit_spline
# function --- that is the function that should be used for all spline
# fitting in this codebase. This is addressed in #93.
f = scipy.interpolate.UnivariateSpline(xvalues, self.widths)
widths_spline = f(xvalues)
self.peak_width_spline_function = f
self.peak_width_spline_rms = util.rms(widths_spline, self.widths)
def plot_peak_widths(self):
"""
Plotting function to plot the peak widths. This can only be called after
gaussfit.fit_gaussian is called. It then fits a univariate spline to it.
The fit_peak_widths function must be called in order for this function
to run.
"""
xvalues = self.xvalues
# Safety check to ensure that the user fits the peak widths before
# trying to plot them.
if self.widths is None:
raise RuntimeError("The plot_peak_widths function was called before the fit_peak_widths function was called.")
widths = self.widths
widths_spline = self.peak_width_spline_function(xvalues)
plt.scatter(xvalues, widths)
plt.plot(xvalues, widths_spline, color="red")
plt.xlabel("xpixel")
plt.ylabel("width")
plt.title("gaussian width v. peak")
# Adding the rms of the spline fit to the plot.
ax = plt.gca()
rms_text = "rms: " + str(self.peak_width_spline_rms)
ax.text(5, 5, rms_text)
plt.show()