-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathseq_scripts.py
162 lines (151 loc) · 6.07 KB
/
seq_scripts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os
import pdb
import sys
import copy
import torch
import numpy as np
import torch.nn as nn
from tqdm import tqdm
import torch.nn.functional as F
from evaluation.slr_eval.wer_calculation import evaluate
from torch.cuda.amp import autocast as autocast
from torch.cuda.amp import GradScaler
def seq_train(loader, model, optimizer, device, epoch_idx, recoder):
model.train()
loss_value = []
clr = [group['lr'] for group in optimizer.optimizer.param_groups]
scaler = GradScaler()
tqdm_loader = tqdm(loader, ncols=100)
nan = 0
for batch_idx, data in enumerate(tqdm_loader):
vid = device.data_to_device(data[0])
vid_lgt = device.data_to_device(data[1])
label = device.data_to_device(data[2])
label_lgt = device.data_to_device(data[3])
optimizer.zero_grad()
with autocast():
ret_dict = model(vid, vid_lgt, label=label, label_lgt=label_lgt)
loss = model.criterion_calculation(ret_dict, label, label_lgt)
if np.isinf(loss.item()) or np.isnan(loss.item()):
print('loss is nan')
print(str(data[1])+' frames')
print(str(data[3])+' glosses')
del ret_dict
del loss
nan+=1
if nan == 30:
exit()
continue
scaler.scale(loss).backward()
scaler.step(optimizer.optimizer)
scaler.update()
# nn.utils.clip_grad_norm_(model.rnn.parameters(), 5)
loss_value.append(loss.item())
if batch_idx % recoder.log_interval == 0:
recoder.print_log(
'\tEpoch: {}, Batch({}/{}) done. Loss: {:.8f} lr:{:.6f}'
.format(epoch_idx, batch_idx, len(loader), loss.item(), clr[0]))
tqdm_loader.set_postfix({'Loss' : loss.item()})
del ret_dict
del loss
optimizer.scheduler.step()
recoder.print_log('\tMean training loss: {:.10f}.'.format(np.mean(loss_value)))
return
def seq_eval(cfg, loader, model, device, mode, epoch, work_dir, recoder,
evaluate_tool="python"):
model.eval()
total_sent = []
total_info = []
total_conv_sent = []
stat = {i: [0, 0] for i in range(len(loader.dataset.dict))}
for batch_idx, data in enumerate(tqdm(loader, ncols=100)):
recoder.record_timer("device")
vid = device.data_to_device(data[0])
vid_lgt = device.data_to_device(data[1])
label = device.data_to_device(data[2])
label_lgt = device.data_to_device(data[3])
with torch.no_grad():
ret_dict = model(vid, vid_lgt, label=label, label_lgt=label_lgt)
total_info += [file_name.split("|")[0] for file_name in data[-1]]
total_sent += ret_dict['recognized_sents']
total_conv_sent += ret_dict['conv_sents']
try:
python_eval = True if evaluate_tool == "python" else False
write2file(work_dir + "output-hypothesis-{}.ctm".format(mode), total_info, total_sent)
write2file(work_dir + "output-hypothesis-{}-conv.ctm".format(mode), total_info,
total_conv_sent)
conv_ret = evaluate(
prefix=work_dir, mode=mode, output_file="output-hypothesis-{}-conv.ctm".format(mode),
evaluate_dir=cfg.dataset_info['evaluation_dir'],
evaluate_prefix=cfg.dataset_info['evaluation_prefix'],
output_dir="epoch_{}_result/".format(epoch),
python_evaluate=python_eval,
)
lstm_ret = evaluate(
prefix=work_dir, mode=mode, output_file="output-hypothesis-{}.ctm".format(mode),
evaluate_dir=cfg.dataset_info['evaluation_dir'],
evaluate_prefix=cfg.dataset_info['evaluation_prefix'],
output_dir="epoch_{}_result/".format(epoch),
python_evaluate=python_eval,
triplet=True,
)
except:
print("Unexpected error:", sys.exc_info()[0])
lstm_ret = 100.0
finally:
pass
del conv_ret
del total_sent
del total_info
del total_conv_sent
del vid
del vid_lgt
del label
del label_lgt
recoder.print_log(f"Epoch {epoch}, {mode} {lstm_ret: 2.2f}%", f"{work_dir}/{mode}.txt")
return lstm_ret
def seq_feature_generation(loader, model, device, mode, work_dir, recoder):
model.eval()
src_path = os.path.abspath(f"{work_dir}{mode}")
tgt_path = os.path.abspath(f"./features/{mode}")
if not os.path.exists("./features/"):
os.makedirs("./features/")
if os.path.islink(tgt_path):
curr_path = os.readlink(tgt_path)
if work_dir[1:] in curr_path and os.path.isabs(curr_path):
return
else:
os.unlink(tgt_path)
else:
if os.path.exists(src_path) and len(loader.dataset) == len(os.listdir(src_path)):
os.symlink(src_path, tgt_path)
return
for batch_idx, data in tqdm(enumerate(loader)):
recoder.record_timer("device")
vid = device.data_to_device(data[0])
vid_lgt = device.data_to_device(data[1])
with torch.no_grad():
ret_dict = model(vid, vid_lgt)
if not os.path.exists(src_path):
os.makedirs(src_path)
start = 0
for sample_idx in range(len(vid)):
end = start + data[3][sample_idx]
filename = f"{src_path}/{data[-1][sample_idx].split('|')[0]}_features.npy"
save_file = {
"label": data[2][start:end],
"features": ret_dict['framewise_features'][sample_idx][:, :vid_lgt[sample_idx]].T.cpu().detach(),
}
np.save(filename, save_file)
start = end
assert end == len(data[2])
os.symlink(src_path, tgt_path)
def write2file(path, info, output):
filereader = open(path, "w")
for sample_idx, sample in enumerate(output):
for word_idx, word in enumerate(sample):
filereader.writelines(
"{} 1 {:.2f} {:.2f} {}\n".format(info[sample_idx],
word_idx * 1.0 / 100,
(word_idx + 1) * 1.0 / 100,
word[0]))