forked from bitcoin/bitcoin
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathkey.py
351 lines (302 loc) · 12.7 KB
/
key.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
# Copyright (c) 2019-2020 Pieter Wuille
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test-only secp256k1 elliptic curve protocols implementation
WARNING: This code is slow, uses bad randomness, does not properly protect
keys, and is trivially vulnerable to side channel attacks. Do not use for
anything but tests."""
import csv
import hashlib
import hmac
import os
import random
import unittest
from test_framework.crypto import secp256k1
# Point with no known discrete log.
H_POINT = "50929b74c1a04954b78b4b6035e97a5e078a5a0f28ec96d547bfee9ace803ac0"
# Order of the secp256k1 curve
ORDER = secp256k1.GE.ORDER
def TaggedHash(tag, data):
ss = hashlib.sha256(tag.encode('utf-8')).digest()
ss += ss
ss += data
return hashlib.sha256(ss).digest()
class ECPubKey:
"""A secp256k1 public key"""
def __init__(self):
"""Construct an uninitialized public key"""
self.p = None
def set(self, data):
"""Construct a public key from a serialization in compressed or uncompressed format"""
self.p = secp256k1.GE.from_bytes(data)
self.compressed = len(data) == 33
@property
def is_compressed(self):
return self.compressed
@property
def is_valid(self):
return self.p is not None
def get_bytes(self):
assert self.is_valid
if self.compressed:
return self.p.to_bytes_compressed()
else:
return self.p.to_bytes_uncompressed()
def verify_ecdsa(self, sig, msg, low_s=True):
"""Verify a strictly DER-encoded ECDSA signature against this pubkey.
See https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm for the
ECDSA verifier algorithm"""
assert self.is_valid
# Extract r and s from the DER formatted signature. Return false for
# any DER encoding errors.
if (sig[1] + 2 != len(sig)):
return False
if (len(sig) < 4):
return False
if (sig[0] != 0x30):
return False
if (sig[2] != 0x02):
return False
rlen = sig[3]
if (len(sig) < 6 + rlen):
return False
if rlen < 1 or rlen > 33:
return False
if sig[4] >= 0x80:
return False
if (rlen > 1 and (sig[4] == 0) and not (sig[5] & 0x80)):
return False
r = int.from_bytes(sig[4:4+rlen], 'big')
if (sig[4+rlen] != 0x02):
return False
slen = sig[5+rlen]
if slen < 1 or slen > 33:
return False
if (len(sig) != 6 + rlen + slen):
return False
if sig[6+rlen] >= 0x80:
return False
if (slen > 1 and (sig[6+rlen] == 0) and not (sig[7+rlen] & 0x80)):
return False
s = int.from_bytes(sig[6+rlen:6+rlen+slen], 'big')
# Verify that r and s are within the group order
if r < 1 or s < 1 or r >= ORDER or s >= ORDER:
return False
if low_s and s >= secp256k1.GE.ORDER_HALF:
return False
z = int.from_bytes(msg, 'big')
# Run verifier algorithm on r, s
w = pow(s, -1, ORDER)
R = secp256k1.GE.mul((z * w, secp256k1.G), (r * w, self.p))
if R.infinity or (int(R.x) % ORDER) != r:
return False
return True
def generate_privkey():
"""Generate a valid random 32-byte private key."""
return random.randrange(1, ORDER).to_bytes(32, 'big')
def rfc6979_nonce(key):
"""Compute signing nonce using RFC6979."""
v = bytes([1] * 32)
k = bytes([0] * 32)
k = hmac.new(k, v + b"\x00" + key, 'sha256').digest()
v = hmac.new(k, v, 'sha256').digest()
k = hmac.new(k, v + b"\x01" + key, 'sha256').digest()
v = hmac.new(k, v, 'sha256').digest()
return hmac.new(k, v, 'sha256').digest()
class ECKey:
"""A secp256k1 private key"""
def __init__(self):
self.valid = False
def set(self, secret, compressed):
"""Construct a private key object with given 32-byte secret and compressed flag."""
assert len(secret) == 32
secret = int.from_bytes(secret, 'big')
self.valid = (secret > 0 and secret < ORDER)
if self.valid:
self.secret = secret
self.compressed = compressed
def generate(self, compressed=True):
"""Generate a random private key (compressed or uncompressed)."""
self.set(generate_privkey(), compressed)
def get_bytes(self):
"""Retrieve the 32-byte representation of this key."""
assert self.valid
return self.secret.to_bytes(32, 'big')
@property
def is_valid(self):
return self.valid
@property
def is_compressed(self):
return self.compressed
def get_pubkey(self):
"""Compute an ECPubKey object for this secret key."""
assert self.valid
ret = ECPubKey()
ret.p = self.secret * secp256k1.G
ret.compressed = self.compressed
return ret
def sign_ecdsa(self, msg, low_s=True, rfc6979=False):
"""Construct a DER-encoded ECDSA signature with this key.
See https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm for the
ECDSA signer algorithm."""
assert self.valid
z = int.from_bytes(msg, 'big')
# Note: no RFC6979 by default, but a simple random nonce (some tests rely on distinct transactions for the same operation)
if rfc6979:
k = int.from_bytes(rfc6979_nonce(self.secret.to_bytes(32, 'big') + msg), 'big')
else:
k = random.randrange(1, ORDER)
R = k * secp256k1.G
r = int(R.x) % ORDER
s = (pow(k, -1, ORDER) * (z + self.secret * r)) % ORDER
if low_s and s > secp256k1.GE.ORDER_HALF:
s = ORDER - s
# Represent in DER format. The byte representations of r and s have
# length rounded up (255 bits becomes 32 bytes and 256 bits becomes 33
# bytes).
rb = r.to_bytes((r.bit_length() + 8) // 8, 'big')
sb = s.to_bytes((s.bit_length() + 8) // 8, 'big')
return b'\x30' + bytes([4 + len(rb) + len(sb), 2, len(rb)]) + rb + bytes([2, len(sb)]) + sb
def compute_xonly_pubkey(key):
"""Compute an x-only (32 byte) public key from a (32 byte) private key.
This also returns whether the resulting public key was negated.
"""
assert len(key) == 32
x = int.from_bytes(key, 'big')
if x == 0 or x >= ORDER:
return (None, None)
P = x * secp256k1.G
return (P.to_bytes_xonly(), not P.y.is_even())
def tweak_add_privkey(key, tweak):
"""Tweak a private key (after negating it if needed)."""
assert len(key) == 32
assert len(tweak) == 32
x = int.from_bytes(key, 'big')
if x == 0 or x >= ORDER:
return None
if not (x * secp256k1.G).y.is_even():
x = ORDER - x
t = int.from_bytes(tweak, 'big')
if t >= ORDER:
return None
x = (x + t) % ORDER
if x == 0:
return None
return x.to_bytes(32, 'big')
def tweak_add_pubkey(key, tweak):
"""Tweak a public key and return whether the result had to be negated."""
assert len(key) == 32
assert len(tweak) == 32
P = secp256k1.GE.from_bytes_xonly(key)
if P is None:
return None
t = int.from_bytes(tweak, 'big')
if t >= ORDER:
return None
Q = t * secp256k1.G + P
if Q.infinity:
return None
return (Q.to_bytes_xonly(), not Q.y.is_even())
def verify_schnorr(key, sig, msg):
"""Verify a Schnorr signature (see BIP 340).
- key is a 32-byte xonly pubkey (computed using compute_xonly_pubkey).
- sig is a 64-byte Schnorr signature
- msg is a 32-byte message
"""
assert len(key) == 32
assert len(msg) == 32
assert len(sig) == 64
P = secp256k1.GE.from_bytes_xonly(key)
if P is None:
return False
r = int.from_bytes(sig[0:32], 'big')
if r >= secp256k1.FE.SIZE:
return False
s = int.from_bytes(sig[32:64], 'big')
if s >= ORDER:
return False
e = int.from_bytes(TaggedHash("BIP0340/challenge", sig[0:32] + key + msg), 'big') % ORDER
R = secp256k1.GE.mul((s, secp256k1.G), (-e, P))
if R.infinity or not R.y.is_even():
return False
if r != R.x:
return False
return True
def sign_schnorr(key, msg, aux=None, flip_p=False, flip_r=False):
"""Create a Schnorr signature (see BIP 340)."""
if aux is None:
aux = bytes(32)
assert len(key) == 32
assert len(msg) == 32
assert len(aux) == 32
sec = int.from_bytes(key, 'big')
if sec == 0 or sec >= ORDER:
return None
P = sec * secp256k1.G
if P.y.is_even() == flip_p:
sec = ORDER - sec
t = (sec ^ int.from_bytes(TaggedHash("BIP0340/aux", aux), 'big')).to_bytes(32, 'big')
kp = int.from_bytes(TaggedHash("BIP0340/nonce", t + P.to_bytes_xonly() + msg), 'big') % ORDER
assert kp != 0
R = kp * secp256k1.G
k = kp if R.y.is_even() != flip_r else ORDER - kp
e = int.from_bytes(TaggedHash("BIP0340/challenge", R.to_bytes_xonly() + P.to_bytes_xonly() + msg), 'big') % ORDER
return R.to_bytes_xonly() + ((k + e * sec) % ORDER).to_bytes(32, 'big')
class TestFrameworkKey(unittest.TestCase):
def test_ecdsa_and_schnorr(self):
"""Test the Python ECDSA and Schnorr implementations."""
def random_bitflip(sig):
sig = list(sig)
sig[random.randrange(len(sig))] ^= (1 << (random.randrange(8)))
return bytes(sig)
byte_arrays = [generate_privkey() for _ in range(3)] + [v.to_bytes(32, 'big') for v in [0, ORDER - 1, ORDER, 2**256 - 1]]
keys = {}
for privkey_bytes in byte_arrays: # build array of key/pubkey pairs
privkey = ECKey()
privkey.set(privkey_bytes, compressed=True)
if privkey.is_valid:
keys[privkey] = privkey.get_pubkey()
for msg in byte_arrays: # test every combination of message, signing key, verification key
for sign_privkey, _ in keys.items():
sig_ecdsa = sign_privkey.sign_ecdsa(msg)
sig_schnorr = sign_schnorr(sign_privkey.get_bytes(), msg)
for verify_privkey, verify_pubkey in keys.items():
verify_xonly_pubkey = verify_pubkey.get_bytes()[1:]
if verify_privkey == sign_privkey:
self.assertTrue(verify_pubkey.verify_ecdsa(sig_ecdsa, msg))
self.assertTrue(verify_schnorr(verify_xonly_pubkey, sig_schnorr, msg))
sig_ecdsa = random_bitflip(sig_ecdsa) # damaging signature should break things
sig_schnorr = random_bitflip(sig_schnorr)
self.assertFalse(verify_pubkey.verify_ecdsa(sig_ecdsa, msg))
self.assertFalse(verify_schnorr(verify_xonly_pubkey, sig_schnorr, msg))
def test_schnorr_testvectors(self):
"""Implement the BIP340 test vectors (read from bip340_test_vectors.csv)."""
num_tests = 0
vectors_file = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'bip340_test_vectors.csv')
with open(vectors_file, newline='', encoding='utf8') as csvfile:
reader = csv.reader(csvfile)
next(reader)
for row in reader:
(i_str, seckey_hex, pubkey_hex, aux_rand_hex, msg_hex, sig_hex, result_str, comment) = row
i = int(i_str)
pubkey = bytes.fromhex(pubkey_hex)
msg = bytes.fromhex(msg_hex)
sig = bytes.fromhex(sig_hex)
result = result_str == 'TRUE'
if seckey_hex != '':
seckey = bytes.fromhex(seckey_hex)
pubkey_actual = compute_xonly_pubkey(seckey)[0]
self.assertEqual(pubkey.hex(), pubkey_actual.hex(), "BIP340 test vector %i (%s): pubkey mismatch" % (i, comment))
aux_rand = bytes.fromhex(aux_rand_hex)
try:
sig_actual = sign_schnorr(seckey, msg, aux_rand)
self.assertEqual(sig.hex(), sig_actual.hex(), "BIP340 test vector %i (%s): sig mismatch" % (i, comment))
except RuntimeError as e:
self.fail("BIP340 test vector %i (%s): signing raised exception %s" % (i, comment, e))
result_actual = verify_schnorr(pubkey, sig, msg)
if result:
self.assertEqual(result, result_actual, "BIP340 test vector %i (%s): verification failed" % (i, comment))
else:
self.assertEqual(result, result_actual, "BIP340 test vector %i (%s): verification succeeded unexpectedly" % (i, comment))
num_tests += 1
self.assertTrue(num_tests >= 15) # expect at least 15 test vectors