-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathprime-in-diagonal.py
35 lines (32 loc) · 1.02 KB
/
prime-in-diagonal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# Time: precompute: O(MAX_N)
# runtime: O(n)
# Space: O(MAX_N)
# number theory
def linear_sieve_of_eratosthenes(n):
primes = []
spf = [-1]*(n+1) # the smallest prime factor
for i in xrange(2, n+1):
if spf[i] == -1:
spf[i] = i
primes.append(i)
for p in primes:
if i*p > n or p > spf[i]:
break
spf[i*p] = p
return primes # len(primes) = O(n/(logn-1)), reference: https://math.stackexchange.com/questions/264544/how-to-find-number-of-prime-numbers-up-to-to-n
MAX_N = 4*10**6
PRIMES = linear_sieve_of_eratosthenes(MAX_N)
PRIMES_SET = set(PRIMES)
class Solution(object):
def diagonalPrime(self, nums):
"""
:type nums: List[List[int]]
:rtype: int
"""
result = 0
for i in xrange(len(nums)):
if nums[i][i] in PRIMES_SET:
result = max(result, nums[i][i])
if nums[i][~i] in PRIMES_SET:
result = max(result, nums[i][~i])
return result