-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpredict_img.py
executable file
·45 lines (35 loc) · 1.34 KB
/
predict_img.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import cv2
import torch
import argparse
from network import DensenetUnetHybrid
import image_utils
def predict_img(img_path, output_path):
"""Inference a single image, save result."""
# switch to CUDA device
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('Use GPU: {}'.format(str(device) != 'cpu'))
# load model
print('Loading model...')
model = DensenetUnetHybrid.load_pretrained(device=device)
model.eval()
# load image
img = cv2.imread(img_path)[..., ::-1]
img = image_utils.scale_image(img)
img = image_utils.center_crop(img)
inp = image_utils.img_transform(img)
inp = inp[None, :, :, :].to(device)
# inference
print('Running the image through the network...')
output = model(inp)
# transform and save the results
output = output.cpu()[0].data.numpy()
image_utils.save_img_and_pred(img, output, output_path)
def get_arguments():
"""Get command line arguments."""
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--img_path', required=True, type=str, help='Path to the input image.')
parser.add_argument('-o', '--output_path', required=True, type=str, help='Path to the output image.')
return parser.parse_args()
if __name__ == '__main__':
args = get_arguments()
predict_img(args.img_path, args.output_path)