-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathestimate_runtime_lower_bound.py
111 lines (95 loc) · 4.86 KB
/
estimate_runtime_lower_bound.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import sys
import parse_logs
NUM_MACHINES = 5
DISKS_PER_MACHINE = 2
CPUS_PER_MACHINE = 8
# Estimate of reasonable disk throughput
DISK_MB_PER_SECOND = 50
# Based on EC2's advertised 1000Mbps. These seem to be full duplex links.
# I've observed MB/s as high as 140.
NETWORK_MB_PER_SECOND = 125
def estimate(filename):
analyzer = parse_logs.Analyzer(filename)
total_job_runtime = 0
actual_job_runtime = 0
min_job_cpu_millis = 0
total_job_cpu_millis = 0
min_job_network_millis = 0
min_job_disk_millis = 0
# Used as a sanity check: shuffle write and shuffle read should be the same.
all_stages_shuffle_write_mb = 0
all_stages_shuffle_read_mb = 0
all_stages_disk_input_mb = 0
for id in sorted(analyzer.stages.keys(), reverse=True):
stage = analyzer.stages[id]
total_cpu_milliseconds = 0
total_disk_input_data = 0
total_hdfs_output_data = 0
total_remote_mb_read = 0
total_shuffle_read_mb = 0
total_shuffle_write_mb = 0
total_machine_time_spent = 0
total_runtime_incl_delay = 0
print "*****STAGE has %s tasks" % len(stage.tasks)
for task in stage.tasks:
total_cpu_milliseconds += task.process_cpu_utilization * task.executor_run_time
if task.input_read_method != "Memory":
total_disk_input_data += task.input_mb
total_shuffle_write_mb += task.shuffle_mb_written
total_machine_time_spent += task.executor_run_time
total_runtime_incl_delay += task.runtime()
total_hdfs_output_data += task.output_mb
if task.has_fetch:
total_remote_mb_read += task.remote_mb_read
# Remote MB still need to be read from disk.
shuffle_mb = task.local_mb_read + task.remote_mb_read
total_disk_input_data += shuffle_mb
total_shuffle_read_mb += shuffle_mb
all_stages_shuffle_write_mb += total_shuffle_write_mb
all_stages_shuffle_read_mb += total_shuffle_read_mb
all_stages_disk_input_mb += total_disk_input_data
print "*******************Stage runtime: ", stage.finish_time() - stage.start_time
print "Total millis across all tasks: ", total_machine_time_spent
print "Total millis including scheduler delay: ", total_runtime_incl_delay
print "Total CPU millis: ", total_cpu_milliseconds
min_cpu_milliseconds = total_cpu_milliseconds / (NUM_MACHINES * CPUS_PER_MACHINE)
print "Total input MB: ", total_disk_input_data
print "Total remote MB: ", total_remote_mb_read
print "Total shuffle read MB: ", total_shuffle_read_mb
print "Total output MB: ", total_hdfs_output_data
total_input_disk_milliseconds = 1000 * total_disk_input_data / DISK_MB_PER_SECOND
total_output_disk_milliseconds = 1000* ((total_shuffle_write_mb + total_hdfs_output_data) /
DISK_MB_PER_SECOND)
min_disk_milliseconds = ((total_input_disk_milliseconds + total_output_disk_milliseconds) /
(NUM_MACHINES * DISKS_PER_MACHINE))
print "Min disk millis: %s, min cpu millis: %s" % (min_disk_milliseconds, min_cpu_milliseconds)
# Add twice the amount of HDFS output data because the data needs to be sent to two locations.
print "Total shuffle write MB: ", total_shuffle_write_mb
total_network_mb = total_remote_mb_read + 2 * total_hdfs_output_data
total_network_milliseconds = 1000 * total_network_mb / NETWORK_MB_PER_SECOND
min_network_milliseconds = total_network_milliseconds / NUM_MACHINES
print "Min network millis: %s" % (min_network_milliseconds)
min_stage_runtime = max(min_disk_milliseconds, min_cpu_milliseconds, min_network_milliseconds)
print "Min stage runtime: ", min_stage_runtime
total_job_runtime += min_stage_runtime
actual_job_runtime += stage.finish_time() - stage.start_time
min_job_cpu_millis += min_cpu_milliseconds
total_job_cpu_millis += total_cpu_milliseconds
min_job_network_millis += min_network_milliseconds
min_job_disk_millis += min_disk_milliseconds
print "--------------------------------------------------------------"
print "Total pipelined job runtime:", total_job_runtime, "milliseconds"
total_not_pipelined_runtime = min_job_cpu_millis + min_job_network_millis + min_job_disk_millis
print "Total not pipelined job runtime:", total_not_pipelined_runtime, "milliseconds"
print "Min CPU milliseconds for job: %s milliseconds (%s total)" % (min_job_cpu_millis, total_job_cpu_millis)
print "Min network milliseconds for job", min_job_network_millis, "milliseconds"
print "Min disk milliseconds for job", min_job_disk_millis, "milliseconds"
print "Actual job runtime:", actual_job_runtime, "milliseconds"
print ("Shuffle write MB: %s, read MB: %s, all input: %s" %
(all_stages_shuffle_write_mb, all_stages_shuffle_read_mb, all_stages_disk_input_mb))
return (total_not_pipelined_runtime, total_job_runtime, min_job_cpu_millis,
min_job_network_millis, min_job_disk_millis, total_job_cpu_millis)
def main(argv):
print estimate(argv[0])
if __name__ == "__main__":
main(sys.argv[1:])