-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathplot_proc_results.py
423 lines (381 loc) · 19.2 KB
/
plot_proc_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import collections
import math
import os
import sys
# This is totally not portable -- just the observed sector size on m2.4xlarge instances.
SECTOR_SIZE_BYTES = 512
MIN_TIME = 0
#112000
def write_template(f):
template_file = open("running_tasks_template.gp")
for line in template_file:
f.write(line)
def write_output_data(filename, data, earliest_time):
f = open(filename, "w")
for (time, x) in data:
f.write("%s\t%s\n" % (time - earliest_time, x))
f.close()
""" N should be sorted before calling this function. """
def get_percentile(N, percent, key=lambda x:x):
if not N:
return 0
k = (len(N) - 1) * percent
f = math.floor(k)
c = math.ceil(k)
if f == c:
return key(N[int(k)])
d0 = key(N[int(f)]) * (c-k)
d1 = key(N[int(c)]) * (k-f)
return d0 + d1
def get_delta(items, earliest_time, latest_time):
filtered_items = [x for x in items if x[0] >= earliest_time and x[0] <= latest_time]
return filtered_items[-1][1] - filtered_items[0][1]
""" Accepts a list of (time, values) tuples and returns the average value during the time
period after earliest_time and before latest_time. """
def get_average(items, earliest_time, latest_time):
filtered_values = [x[1] for x in items if x[0] >= earliest_time and x[0] <= latest_time]
return sum(filtered_values) * 1.0 / len(filtered_values)
def write_running_tasks_plot(file_prefix, y2label, output_filename, running_tasks_plot_file,
running_tasks_filename, experiment_duration):
# Warning: this graph ends up looking like a comb -- since the time in between task launches is
# short relative to task runtime.
running_tasks_plot_file.write(
"# Must be plotted from the parent directory for links to work correctly\n")
write_template(running_tasks_plot_file)
running_tasks_plot_file.write("set xlabel \"Time (ms)\"\n")
#running_tasks_plot_file.write("set xrange [%s:%s]\n" %
# (experiment_duration - 1200000, experiment_duration - 1000000))
running_tasks_plot_file.write("set xrange [5000:]\n")
running_tasks_plot_file.write("set y2tics\n")
running_tasks_plot_file.write("set y2label \"%s\"\n" % y2label)
running_tasks_plot_file.write("set output \"%s/%s.pdf\"\n\n" % (file_prefix, output_filename))
running_tasks_plot_file.write(
("plot \"%s\" using 1:2 w l ls 1 title \"Running tasks\" axes x1y1,\\\n" %
running_tasks_filename))
def parse_proc_file(filename):
print "Parsing ", filename
# List of tuples, where the first item is the time and the second
# item is 1 if a task started at that time and -1 if a task
# finished at that time.
task_events = []
# Time, GC tuples.
gc_rates = []
gc_totals = []
# Time, CPU usage tuples using two different measurement strategies.
# 1 uses the user/sys jiffies divided by the total elapsed jiffies.
# 2 estimates the utilization based on the user/sys jiffies divided
# by the jiffies / second on the machine (which is 100).
user_cpu_usage1 = []
sys_cpu_usage1 = []
proctotal_cpu_usage1 = []
# Time the CPU was active, across all processes.
total_cpu_usage1 = []
# Time the cpu was idle and at least one process was waiting for IO.
iowait_cpu_usage1 = []
# Time the cpu was idle.
idle_cpu_usage1 = []
user_cpu_usage2 = []
sys_cpu_usage2 = []
total_cpu_usage2 = []
# Time, total CPU counter tuples. Used to compute average CPU usage
# during experiment.
user_cpu_totals = []
sys_cpu_totals = []
# Time, IO rate tuples for the process. Misleading because this is the rate at
# which reads and writes are issued, and doesn't take into account the time to
# actually flush them to disk.
rchar = []
rchar_totals = []
wchar = []
wchar_totals = []
rbytes_totals = []
wbytes_totals = []
# Time, IO rate tuples for the whole system (listed separately for each block device),
# but as read from the disk stats (so reflect what's actually happening at the device-level).
sectors_read_rate = collections.defaultdict(list)
sectors_written_rate = collections.defaultdict(list)
sectors_total_rate = collections.defaultdict(list)
sectors_read_total = collections.defaultdict(list)
sectors_written_total = collections.defaultdict(list)
# Time, network traffic tuples.
trans_bytes_rate = []
trans_packets_rate = []
recv_bytes_rate = []
recv_packets_rate = []
trans_bytes_totals = []
recv_bytes_totals = []
BYTES_PER_MB = 1048576
task_durations = []
file_prefix = "%s_parsed" % filename
if not os.path.exists(file_prefix):
print "Making directory for results: %s" % file_prefix
os.mkdir(file_prefix)
results_file = open(filename)
for line in results_file:
if line.find("Task run") != -1:
items = line.split(" ")
start_time = int(items[7])
task_events.append((start_time, 1))
end_time = int(items[9][:-1])
task_events.append((end_time, -1))
task_durations.append(end_time - start_time)
elif line.find("GC total") != -1:
items = line.split(" ")
time = int(items[4])
gc_rates.append((time, float(items[13])))
gc_totals.append((time, long(items[7])))
elif line.find("CPU utilization (relative metric)") != -1:
items = line.strip("\n").split(" ")
time = int(items[4])
user_cpu_usage1.append((time, float(items[10])))
sys_cpu_usage1.append((time, float(items[12])))
proctotal_cpu_usage1.append((time, float(items[14])))
total_cpu_usage1.append((time, float(items[16])))
iowait_cpu_usage1.append((time, float(items[18])))
idle_cpu_usage1.append((time, float(items[20])))
# Sanity check = 1: print (float(items[16]) + float(items[18]) + float(items[20]))
elif line.find("CPU utilization (jiffie-based)") != -1:
items = line.split(" ")
time = int(items[4])
user_cpu_usage2.append((time, float(items[9])))
sys_cpu_usage2.append((time, float(items[11])))
total_cpu_usage2.append((time, float(items[13][:-1])))
elif line.find("CPU counters") != -1:
items = line.split(" ")
time = int(items[4])
user_cpu_totals.append((time, float(items[8])))
sys_cpu_totals.append((time, float(items[10])))
elif line.find("rchar rate") != -1:
items = line.split(" ")
time = int(items[4])
rchar.append((time, float(items[7]) / BYTES_PER_MB))
wchar.append((time, float(items[10]) / BYTES_PER_MB))
elif line.find("IO Totals") != -1:
items = line.strip("\n").split(" ")
time = int(items[4])
rchar_totals.append((time, long(items[8])))
wchar_totals.append((time, long(items[10])))
rbytes_totals.append((time, long(items[12])))
wbytes_totals.append((time, long(items[14])))
elif line.find("sectors") != -1:
items = line.strip("\n").split(" ")
time = int(items[4])
device_name = items[5]
sectors_read_rate[device_name].append((time, float(items[9])))
sectors_written_rate[device_name].append((time, float(items[11])))
sectors_total_rate[device_name].append((time, float(items[9]) + float(items[11])))
sectors_read_total[device_name].append((time, int(items[14])))
sectors_written_total[device_name].append((time, int(items[16])))
elif line.find("trans rates") != -1:
items = line.strip("\n").split(" ")
time = int(items[4])
trans_bytes_rate.append((time, float(items[7]) / BYTES_PER_MB))
trans_packets_rate.append((time, float(items[9])))
recv_bytes_rate.append((time, float(items[13]) / BYTES_PER_MB))
recv_packets_rate.append((time, float(items[15])))
elif line.find("totals: trans") != -1:
items = line.strip("\n").split(" ")
time = int(items[4])
trans_bytes_totals.append((time, int(items[8])))
recv_bytes_totals.append((time, int(items[13])))
print "Found %s task events" % len(task_events)
# Output file with number of running tasks.
task_events.sort(key = lambda x: x[0])
running_tasks_filename = "%s/running_tasks" % file_prefix
running_tasks_file = open(running_tasks_filename, "w")
running_tasks = 0
# Find the first task launch after MIN_TIME.
absolute_min_time = task_events[0][0] + MIN_TIME
print absolute_min_time
earliest_time = min([pair[0] for pair in task_events if pair[0] > absolute_min_time])
print earliest_time
#earliest_time += 1000000
latest_time = int(task_events[-1][0])
for (time, event) in task_events:
# Plot only the time delta -- makes the graph much easier to read.
running_tasks_file.write("%s\t%s\n" % (time - earliest_time, running_tasks))
running_tasks += event
running_tasks_file.write("%s\t%s\n" % (time - earliest_time, running_tasks))
running_tasks_file.close()
# Output CPU usage data.
user_cpu_filename = "%s/user_cpu" % file_prefix
write_output_data(user_cpu_filename, user_cpu_usage1, earliest_time)
sys_cpu_filename = "%s/sys_cpu" % file_prefix
write_output_data(sys_cpu_filename, sys_cpu_usage1, earliest_time)
proctotal_cpu_filename = "%s/proctotal_cpu" % file_prefix
write_output_data(proctotal_cpu_filename, proctotal_cpu_usage1, earliest_time)
total_cpu_filename = "%s/total_cpu" % file_prefix
write_output_data(total_cpu_filename, total_cpu_usage1, earliest_time)
idle_cpu_filename = "%s/idle_cpu" % file_prefix
write_output_data(idle_cpu_filename, idle_cpu_usage1, earliest_time)
iowait_cpu_filename = "%s/iowait_cpu" % file_prefix
write_output_data(iowait_cpu_filename, iowait_cpu_usage1, earliest_time)
# Output CPU use percentiles in order to make a box/whiskers plot.
total_cpu_values = [pair[1] for pair in proctotal_cpu_usage1]
total_cpu_values.sort()
box_plot_file = open("%s/total_cpu_box" % file_prefix, "w")
box_plot_file.write("%s\t%s\t%s\t%s\t%s\n" %
(get_percentile(total_cpu_values, 0.05),
get_percentile(total_cpu_values, 0.25),
get_percentile(total_cpu_values, 0.5),
get_percentile(total_cpu_values, 0.75),
get_percentile(total_cpu_values, 0.95)))
box_plot_file.close()
# Output CPU usage data using second metric.
user_cpu_filename2 = "%s/user_cpu2" % file_prefix
write_output_data(user_cpu_filename2, user_cpu_usage2, earliest_time)
sys_cpu_filename2 = "%s/sys_cpu2" % file_prefix
write_output_data(sys_cpu_filename2, sys_cpu_usage2, earliest_time)
proctotal_cpu_filename2 = "%s/total_cpu2" % file_prefix
write_output_data(proctotal_cpu_filename2, total_cpu_usage2, earliest_time)
# Output CPU use percentiles in order to make a box/whiskers plot.
total_cpu2_values = [pair[1] for pair in total_cpu_usage2]
total_cpu2_values.sort()
box_plot_file2 = open("%s/total_cpu2_box" % file_prefix, "w")
box_plot_file2.write("%s\t%s\t%s\t%s\t%s\n" %
(get_percentile(total_cpu2_values, 0.05),
get_percentile(total_cpu2_values, 0.25),
get_percentile(total_cpu2_values, 0.5),
get_percentile(total_cpu2_values, 0.75),
get_percentile(total_cpu2_values, 0.95)))
box_plot_file2.close()
job_duration = latest_time - earliest_time
# Output GC data.
gc_filename = "%s/gc" % file_prefix
write_output_data(gc_filename, gc_rates, earliest_time)
total_gc_time = get_delta(gc_totals, earliest_time, latest_time)
print "Total GC millis:", total_gc_time
print "Fraction of time doing GC: ", total_gc_time * 1.0 / job_duration
# Print average CPU usage during time when tasks were running. This assumes that
# all the measurement intervals were the same.
print "Average user CPU use: ", get_average(user_cpu_usage1, earliest_time, latest_time)
print "Average total CPU use: ", get_average(proctotal_cpu_usage1, earliest_time, latest_time)
print "Average IO-wait CPU use: ", get_average(iowait_cpu_usage1, earliest_time, latest_time)
print "Average rchar rate: ", get_average(rchar, earliest_time, latest_time)
print " rchar delta: ", get_delta(rchar_totals, earliest_time, latest_time) * 1.0 / BYTES_PER_MB
print ("Average rchar (MB/s, from totals): %s" %
(get_delta(rchar_totals, earliest_time, latest_time) * 1000.0 / (job_duration * BYTES_PER_MB)))
print "Average wchar rate: ", get_average(wchar, earliest_time, latest_time)
print " wchar delta: ", get_delta(wchar_totals, earliest_time, latest_time) * 1.0 / BYTES_PER_MB
print ("Average wchar (from totals): %s" %
(get_delta(wchar_totals, earliest_time, latest_time) * 1000.0 / (job_duration * BYTES_PER_MB)))
print ("Average rbytes (from totals): %s" %
(get_delta(rbytes_totals, earliest_time, latest_time) * 1000.0 / (job_duration * BYTES_PER_MB)))
print ("Average wbytes (from totals): %s" %
(get_delta(wbytes_totals, earliest_time, latest_time) * 1000.0 / (job_duration * BYTES_PER_MB)))
# Print averages based on the total numbers.
user_cpu_delta = get_delta(user_cpu_totals, earliest_time, latest_time)
sys_cpu_delta = get_delta(sys_cpu_totals, earliest_time, latest_time)
# Multiply by 10 because there are 100 jiffies / second and normalize by the number of cores.
avg_user_cpu = 10 * user_cpu_delta / (8.0 * job_duration)
avg_sys_cpu = 10 * sys_cpu_delta / (8.0 * job_duration)
print "Average user CPU (based on totals): ", avg_user_cpu
print "Average sys CPU (based on totals): ", avg_sys_cpu
# Output job duration ESTIMATE (just last task end - first task start; this is just one worker
# so not totally accurate) and average task duration.
print "Job duration ESTIMATE (ms): ", job_duration
print "Average task duration (ms): ", sum(task_durations) * 1.0 / len(task_durations)
print "Total tasks:", len(task_durations)
# Output IO usage data.
rchar_filename = "%s/rchar" % file_prefix
write_output_data(rchar_filename, rchar, earliest_time)
wchar_filename = "%s/wchar" % file_prefix
write_output_data(wchar_filename, wchar, earliest_time)
for device_name in sectors_read_rate.keys():
print "*******", device_name
sectors_read_filename = "%s/%s_sectors_read" % (file_prefix, device_name)
write_output_data(sectors_read_filename, sectors_read_rate[device_name], earliest_time)
sectors_written_filename = "%s/%s_sectors_written" % (file_prefix, device_name)
write_output_data(sectors_written_filename, sectors_written_rate[device_name], earliest_time)
sectors_total_filename = "%s/%s_sectors_total" % (file_prefix, device_name)
write_output_data(sectors_total_filename, sectors_total_rate[device_name], earliest_time)
sectors_read = get_delta(sectors_read_total[device_name], earliest_time, latest_time)
# Need to multiple by 1000 to convert from milliseconds to seconds.
avg_mbps_read = sectors_read * SECTOR_SIZE_BYTES * 1000.0 / (job_duration * BYTES_PER_MB)
print ("Avg MB/s read for %s: %f" % (device_name, avg_mbps_read))
sectors_written = get_delta(sectors_written_total[device_name], earliest_time, latest_time)
avg_mbps_written = sectors_written * SECTOR_SIZE_BYTES * 1000.0 / (job_duration * BYTES_PER_MB)
print ("Avg MB/s written for %s: %f" % (device_name, avg_mbps_written))
print "Total MB/s read/written for %s: %f" % (device_name, avg_mbps_read + avg_mbps_written)
print "%s: %d sectors written; %d sectors read" % (device_name, sectors_written, sectors_read)
# Output network data.
trans_bytes_rate_filename = "%s/trans_bytes_rate" % file_prefix
write_output_data(trans_bytes_rate_filename, trans_bytes_rate, earliest_time)
trans_packets_rate_filename = "%s/trans_packets_rate" % file_prefix
write_output_data(trans_packets_rate_filename, trans_packets_rate, earliest_time)
recv_bytes_rate_filename = "%s/recv_bytes_rate" % file_prefix
write_output_data(recv_bytes_rate_filename, recv_bytes_rate, earliest_time)
recv_packets_rate_filename = "%s/recv_packets_rate" % file_prefix
write_output_data(recv_packets_rate_filename, recv_packets_rate, earliest_time)
trans_mbytes = get_delta(trans_bytes_totals, earliest_time, latest_time) * 1.0 / BYTES_PER_MB
print "Avg MB/s transmitted:", trans_mbytes * 1000.0 / job_duration, "total:", trans_mbytes
recv_mbytes = get_delta(recv_bytes_totals, earliest_time, latest_time) * 1.0 / BYTES_PER_MB
print "Avg MB/s received:", recv_mbytes * 1000.0 / job_duration, "total:", recv_mbytes
# Output one file with running tasks, CPU, and IO usage.
running_tasks_plot_file = open("%s/running_tasks_cpu.gp" % file_prefix, "w")
experiment_duration = latest_time - earliest_time
write_running_tasks_plot(file_prefix, "Percent", "running_tasks_cpu", running_tasks_plot_file,
running_tasks_filename, experiment_duration)
running_tasks_plot_file.write(
("\"%s\" using 1:2 w l ls 4 title \"GC\" axes x1y2,\\\n" % gc_filename))
running_tasks_plot_file.write(
("\"%s\" using 1:2 w l ls 2 title \"User CPU\" axes x1y2,\\\n" %
user_cpu_filename))
running_tasks_plot_file.write(
("\"%s\" using 1:2 w l ls 3 title \"System CPU\" axes x1y2,\\\n" %
sys_cpu_filename))
# running_tasks_plot_file.write(
# ("\"%s\" using 1:2 w l ls 4 title \"Total Process CPU\" axes x1y2,\\\n" %
# proctotal_cpu_filename))
running_tasks_plot_file.write(
("\"%s\" using 1:2 w l ls 5 title \"Total CPU\" axes x1y2,\\\n" %
total_cpu_filename))
running_tasks_plot_file.write(
("\"%s\" using 1:2 w l ls 6 title \"Idle CPU\" axes x1y2,\\\n" %
idle_cpu_filename))
running_tasks_plot_file.write(
("\"%s\" using 1:2 w l ls 7 title \"IO Wait CPU\" axes x1y2" %
iowait_cpu_filename))
# Output two network files: one with bytes and another with packets.
network_plot_file = open("%s/running_tasks_network_bytes.gp" % file_prefix, "w")
write_running_tasks_plot(file_prefix, "MB", "running_tasks_network_bytes",
network_plot_file, running_tasks_filename, experiment_duration)
network_plot_file.write(
("\"%s\" using 1:2 w l ls 2 title \"Transmitted bytes\" axes x1y2,\\\n" %
trans_bytes_rate_filename))
network_plot_file.write(
"\"%s\" using 1:2 w l ls 3 title \"Received bytes\" axes x1y2\n" % recv_bytes_rate_filename)
io_plot_file = open("%s/running_tasks_io.gp" % file_prefix, "w")
write_running_tasks_plot(file_prefix, "MB/s", "running_tasks_io", io_plot_file,
running_tasks_filename, experiment_duration)
next_line_style = 2
for device_name in sectors_read_rate.keys():
if next_line_style > 2:
io_plot_file.write(",\\\n")
sectors_read_filename = "%s/%s_sectors_read" % (file_prefix, device_name)
io_plot_file.write(
"\"%s\" using 1:($2/%s) w l ls %d title \"%s read\" axes x1y2,\\\n" %
(sectors_read_filename, BYTES_PER_MB / 512, next_line_style, device_name))
next_line_style += 1
sectors_written_filename = "%s/%s_sectors_written" % (file_prefix, device_name)
io_plot_file.write(
"\"%s\" using 1:($2/%s) w l ls %d title \"%s written\" axes x1y2" %
(sectors_written_filename, BYTES_PER_MB / 512, next_line_style, device_name))
next_line_style += 1
io_plot_file.write("\n")
network_plot_file = open("%s/running_tasks_network_packets.gp" % file_prefix, "w")
write_running_tasks_plot(file_prefix, "packets", "running_tasks_network_packets",
network_plot_file, running_tasks_filename, experiment_duration)
network_plot_file.write(
("\"%s\" using 1:2 w l ls 2 title \"Transmitted packets\" axes x1y2,\\\n" %
trans_packets_rate_filename))
network_plot_file.write(
"\"%s\" using 1:2 w l ls 3 title \"Received packets\" axes x1y2\n" % recv_packets_rate_filename)
def main(argv):
file_prefix = argv[0].strip("/")
print "Parsing logs in directory %s" % file_prefix
for filename in os.listdir(file_prefix):
if filename.endswith("proc_log"):
parse_proc_file(os.path.join(file_prefix, filename))
if __name__ == "__main__":
main(sys.argv[1:])