-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathtask.py
341 lines (291 loc) · 15 KB
/
task.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import numpy
import logging
class Task:
def __init__(self, data, is_json):
if is_json:
self.initialize_from_json(data)
else:
self.initialize_from_job_logger(data)
self.scheduler_delay = (self.finish_time - self.executor_run_time -
self.executor_deserialize_time - self.result_serialization_time - self.start_time)
# Should be set to true if this task is a straggler and we know the cause of the
# straggler behavior.
self.straggler_behavior_explained = False
def initialize_from_json(self, json_data):
self.logger = logging.getLogger("Task")
task_info = json_data["Task Info"]
task_metrics = json_data["Task Metrics"]
self.start_time = task_info["Launch Time"]
self.finish_time = task_info["Finish Time"]
self.executor = task_info["Host"]
self.executor_run_time = task_metrics["Executor Run Time"]
self.executor_deserialize_time = task_metrics["Executor Deserialize Time"]
self.result_serialization_time = task_metrics["Result Serialization Time"]
self.gc_time = task_metrics["JVM GC Time"]
# TODO: looks like this is never used.
self.executor_id = task_info["Executor ID"]
# TODO: add utilization to task metrics output by JSON.
self.disk_utilization = {}
self.network_bytes_transmitted_ps = 0
self.network_bytes_received_ps = 0
self.process_cpu_utilization = 0
self.total_cpu_utilization = 0
self.shuffle_write_time = 0
self.shuffle_mb_written = 0
SHUFFLE_WRITE_METRICS_KEY = "Shuffle Write Metrics"
if SHUFFLE_WRITE_METRICS_KEY in task_metrics:
shuffle_write_metrics = task_metrics[SHUFFLE_WRITE_METRICS_KEY]
# Convert to milliseconds (from nanoseconds).
self.shuffle_write_time = shuffle_write_metrics["Shuffle Write Time"] / 1.0e6
OPEN_TIME_KEY = "Shuffle Open Time"
if OPEN_TIME_KEY in shuffle_write_metrics:
shuffle_open_time = shuffle_write_metrics[OPEN_TIME_KEY] / 1.0e6
print "Shuffle open time: ", shuffle_open_time
self.shuffle_write_time += shuffle_open_time
CLOSE_TIME_KEY = "Shuffle Close Time"
if CLOSE_TIME_KEY in shuffle_write_metrics:
shuffle_close_time = shuffle_write_metrics[CLOSE_TIME_KEY] / 1.0e6
print "Shuffle close time: ", shuffle_close_time
self.shuffle_write_time += shuffle_close_time
self.shuffle_mb_written = shuffle_write_metrics["Shuffle Bytes Written"] / 1048576.
# TODO: print warning when non-zero disk bytes spilled??
# TODO: are these accounted for in shuffle metrics?
INPUT_METRICS_KEY = "Input Metrics"
self.input_read_time = 0
self.input_read_method = "unknown"
self.input_mb = 0
if INPUT_METRICS_KEY in task_metrics:
input_metrics = task_metrics[INPUT_METRICS_KEY]
self.input_read_time = 0 # TODO: fill in once input time has been added.
self.input_read_method = input_metrics["Data Read Method"]
self.input_mb = input_metrics["Bytes Read"] / 1048576.
# TODO: add write time and MB.
self.output_write_time = 0 #int(items_dict["OUTPUT_WRITE_BLOCKED_NANOS"]) / 1.0e6
self.output_mb = 0
#if "OUTPUT_BYTES" in items_dict:
# self.output_mb = int(items_dict["OUTPUT_BYTES"]) / 1048576.
self.has_fetch = True
# False if the task was a map task that did not run locally with its input data.
self.data_local = True
SHUFFLE_READ_METRICS_KEY = "Shuffle Read Metrics"
if SHUFFLE_READ_METRICS_KEY not in task_metrics:
if (task_info["Locality"] != "NODE_LOCAL") and (task_info["Locality"] != "PROCESS_LOCAL"):
self.data_local = False
self.has_fetch = False
return
shuffle_read_metrics = task_metrics[SHUFFLE_READ_METRICS_KEY]
self.fetch_wait = shuffle_read_metrics["Fetch Wait Time"]
self.local_blocks_read = shuffle_read_metrics["Local Blocks Fetched"]
self.remote_blocks_read = shuffle_read_metrics["Remote Blocks Fetched"]
self.remote_mb_read = shuffle_read_metrics["Remote Bytes Read"] / 1048576.
self.local_mb_read = 0
LOCAL_BYTES_READ_KEY = "Local Bytes Read"
if LOCAL_BYTES_READ_KEY in shuffle_read_metrics:
self.local_mb_read = shuffle_read_metrics[LOCAL_BYTES_READ_KEY] / 1048576.
# The local read time is not included in the fetch wait time: the task blocks
# on reading data locally in the BlockFetcherIterator.initialize() method.
self.local_read_time = 0
LOCAL_READ_TIME_KEY = "Local Read Time"
if LOCAL_READ_TIME_KEY in shuffle_read_metrics:
self.local_read_time = shuffle_read_metrics[LOCAL_READ_TIME_KEY]
self.total_time_fetching = shuffle_read_metrics["Fetch Wait Time"]
def initialize_from_job_logger(self, line):
self.logger = logging.getLogger("Task")
items = line.split(" ")
items_dict = {}
for pair in items:
if pair.find("=") == -1:
continue
key, value = pair.split("=")
items_dict[key] = value
self.start_time = int(items_dict["START_TIME"])
self.finish_time = int(items_dict["FINISH_TIME"])
self.executor = items_dict["HOST"]
self.executor_run_time = int(items_dict["EXECUTOR_RUN_TIME"])
self.executor_deserialize_time = int(items_dict["EXECUTOR_DESERIALIZE_TIME"])
# TODO: Add result serialization time to job logger metrics.
self.result_serialization_time = 0
self.gc_time = int(items_dict["GC_TIME"])
self.executor_id = int(items_dict["EXECUTOR_ID"])
# Estimate serialization and deserialization time based on samples.
# TODO: Report an estimated error here based on variation in samples?
self.estimated_serialization_millis = 0
if "SERIALIZATED_ITEMS" in items_dict:
serialized_items = int(items_dict["SERIALIZATED_ITEMS"])
# Samples are times in nanoseconds.
serialized_samples = [int(sample) for sample in items_dict["SERIALIZED_SAMPLES"].split(",")]
print "Serialized %s items, sampled %s" % (serialized_items, len(serialized_samples))
self.estimated_serialization_millis = serialized_items * numpy.mean(serialized_samples[0::10]) / 1e6
self.estimated_deserialization_millis = 0
if "DESERIALIZED_ITEMS" in items_dict:
deserialized_items = int(items_dict["DESERIALIZED_ITEMS"])
deserialized_samples = [
int(sample) for sample in items_dict["DESERIALIZATION_TIME_NANOS"].split(",")]
print "Deserialized %s items, sampled %s" % (deserialized_items, len(deserialized_samples))
self.estimated_deserialization_millis = (
deserialized_items * numpy.median(deserialized_samples[0::1]) / 1e6)
# Utilization metrics.
# Map of device name to (utilization, read throughput, write throughout).
self.disk_utilization = {}
utilization_str = items_dict["DISK_UTILIZATION"]
for block_utilization_str in utilization_str.split(";"):
if block_utilization_str:
device_name, numbers = block_utilization_str.split(":")
self.disk_utilization[device_name] = [float(x) for x in numbers.split(",")]
network_throughput_items = [
float(x.split(":")[1]) for x in items_dict["NETWORK_UTILIZATION"].split(",")]
self.network_bytes_transmitted_ps = network_throughput_items[1]
self.network_bytes_received_ps = network_throughput_items[0]
cpu_utilization_numbers = [
float(x.split(":")[1]) for x in items_dict["CPU_UTILIZATION"].split(",")]
# Record the total CPU utilization as the total system CPU use + total user CPU use.
self.process_cpu_utilization = cpu_utilization_numbers[0] + cpu_utilization_numbers[1]
self.total_cpu_utilization = cpu_utilization_numbers[2] + cpu_utilization_numbers[3]
# Should be set to true if this task is a straggler and we know the cause of the
# straggler behavior.
self.straggler_behavior_explained = False
self.shuffle_write_time = 0
self.shuffle_mb_written = 0
SHUFFLE_WRITE_TIME_KEY = "SHUFFLE_WRITE_TIME"
if SHUFFLE_WRITE_TIME_KEY in items_dict:
# Convert to milliseconds (from nanoseconds).
self.shuffle_write_time = int(items_dict[SHUFFLE_WRITE_TIME_KEY]) / 1.0e6
self.shuffle_mb_written = int(items_dict["SHUFFLE_BYTES_WRITTEN"]) / 1048576.
INPUT_METHOD_KEY = "READ_METHOD"
self.input_read_time = 0
self.input_read_method = "unknown"
self.input_mb = 0
if INPUT_METHOD_KEY in items_dict:
self.input_read_time = int(items_dict["READ_TIME_NANOS"]) / 1.0e6
self.input_read_method = items_dict["READ_METHOD"]
self.input_mb = float(items_dict["INPUT_BYTES"]) / 1048576.
self.output_write_time = int(items_dict["OUTPUT_WRITE_BLOCKED_NANOS"]) / 1.0e6
self.output_mb = 0
if "OUTPUT_BYTES" in items_dict:
self.output_mb = int(items_dict["OUTPUT_BYTES"]) / 1048576.
self.has_fetch = True
# False if the task was a map task that did not run locally with its input data.
self.data_local = True
if line.find("FETCH") < 0:
if "LOCALITY" in items_dict and items_dict["LOCALITY"] != "NODE_LOCAL":
self.data_local = False
self.has_fetch = False
return
self.fetch_wait = int(items_dict["REMOTE_FETCH_WAIT_TIME"])
self.local_blocks_read = int(items_dict["BLOCK_FETCHED_LOCAL"])
self.remote_blocks_read = int(items_dict["BLOCK_FETCHED_REMOTE"])
self.remote_mb_read = int(items_dict["REMOTE_BYTES_READ"]) / 1048576.
self.local_mb_read = int(items_dict["LOCAL_READ_BYTES"]) / 1048576.
# The local read time is not included in the fetch wait time: the task blocks
# on reading data locally in the BlockFetcherIterator.initialize() method.
self.local_read_time = int(items_dict["LOCAL_READ_TIME"])
self.total_time_fetching = int(items_dict["REMOTE_FETCH_TIME"])
def input_size_mb(self):
if self.has_fetch:
return self.remote_mb_read + self.local_mb_read
else:
return self.input_mb
def compute_time_without_gc(self):
""" Returns the time this task spent computing.
Assumes shuffle writes don't get pipelined with task execution (TODO: verify this).
Does not include GC time.
"""
compute_time = (self.runtime() - self.scheduler_delay - self.gc_time -
self.shuffle_write_time - self.input_read_time - self.output_write_time)
if self.has_fetch:
# Subtract off of the time to read local data (which typically comes from disk) because
# this read happens before any of the computation starts.
compute_time = compute_time - self.fetch_wait - self.local_read_time
return compute_time
def compute_time(self):
""" Returns the time this task spent computing (potentially including GC time).
The reason we don't subtract out GC time here is that garbage collection may happen
during fetch wait.
"""
return self.compute_time_without_gc() + self.gc_time
def runtime_no_compute(self):
""" Returns how long the task would have run for had it not done any computation. """
# Time the task spent reading data over the network or from disk for the shuffle.
# Computation happens during this time, but if the computation were infinitely fast,
# this phase wouldn't have sped up because it was ultimately waiting on the network.
# This is an approximation because tasks don't currently log the amount of time where
# the network is stopped, waiting for the computation to speed up.
# We're also approximating because there's some disk writing that happens in parallel
# via the OS buffer cache. It's basically impossible for us to account for that so
# we ignore it.
# The final reason that this is an approximation is that the shuffle write time could overlap with
# the shuffle time (if a task is both reading shuffle inputs and writing shuffle outputs).
# We should be able to fix the logging to correct this issue.
compute_wait_time = self.finish_time - self.start_time - self.shuffle_write_time - self.scheduler_delay - self.gc_time - self.input_read_time
if self.has_fetch:
#compute_wait_time = compute_wait_time - shuffle_time
compute_wait_time = compute_wait_time - self.fetch_wait
return self.runtime() - compute_wait_time
def runtime_no_disk(self):
""" Returns a lower bound on what the runtime would have been without disk IO.
Includes shuffle read time, which is partially spent using the network and partially spent
using disk.
"""
disk_time = self.output_write_time + self.shuffle_write_time + self.input_read_time
if self.has_fetch:
disk_time += self.local_read_time + self.fetch_wait
return self.runtime() - disk_time
def disk_time(self):
""" Returns the time writing shuffle output.
Ignores disk time taken to read shuffle input as part of a transfer over the network because in
the traces we've seen so far, it's a very small percentage of the network time.
"""
if self.has_fetch:
return self.shuffle_write_time + self.local_read_time
return self.shuffle_write_time
def __str__(self):
if self.has_fetch:
base = self.start_time
# Print times relative to the start time so that they're easier to read.
desc = (("Start time: %s, local read time: %s, " +
"fetch wait: %s, compute time: %s, gc time: %s, shuffle write time: %s, " +
"result ser: %s, finish: %s, shuffle bytes: %s, input bytes: %s") %
(self.start_time, self.local_read_time,
self.fetch_wait, self.compute_time(), self.gc_time,
self.shuffle_write_time, self.result_serialization_time, self.finish_time - base,
self.local_mb_read + self.remote_mb_read, self.input_mb))
else:
desc = ("Start time: %s, finish: %s, scheduler delay: %s, input read time: %s, gc time: %s, shuffle write time: %s" %
(self.start_time, self.finish_time, self.scheduler_delay, self.input_read_time, self.gc_time, self.shuffle_write_time))
return desc
def log_verbose(self):
self.logger.debug(str(self))
def runtime(self):
return self.finish_time - self.start_time
def runtime_no_input(self):
new_finish_time = self.finish_time - self.input_read_time
return new_finish_time - self.start_time
def runtime_no_output(self):
new_finish_time = self.finish_time - self.output_write_time
return new_finish_time - self.start_time
def runtime_no_shuffle_write(self):
return self.finish_time - self.shuffle_write_time - self.start_time
def runtime_no_shuffle_read(self):
if self.has_fetch:
return self.finish_time - self.fetch_wait - self.local_read_time - self.start_time
else:
return self.runtime()
def runtime_no_remote_shuffle_read(self):
if self.has_fetch:
return self.finish_time - self.fetch_wait - self.start_time
else:
return self.runtime()
def runtime_no_output(self):
new_finish_time = self.finish_time - self.output_write_time
return new_finish_time - self.start_time
def runtime_no_input_or_output(self):
new_finish_time = self.finish_time - self.input_read_time - self.output_write_time
return new_finish_time - self.start_time
def runtime_no_network(self):
runtime_no_in_or_out = self.runtime_no_output()
if not self.data_local:
runtime_no_in_or_out -= self.input_read_time
if self.has_fetch:
return runtime_no_in_or_out - self.fetch_wait
else:
return runtime_no_in_or_out