-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathserver.R
1465 lines (1160 loc) · 57.4 KB
/
server.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2016 by Katie Baker
#
# https://ics.hutton.ac.uk/blastmap/
# https://github.com/kb-bioinf/BLASTmap
#
# Distributed under the MIT licence
# Please see LICENSE.txt for terms of distribution
library(shiny)
library(d3heatmap)
library(reshape2)
library(htmlwidgets)
library(RColorBrewer)
library(gplots)
library(grDevices)
options(expressions=10000)
options(shiny.maxRequestSize=10*1024^2)
`%then%` <- shiny:::`%OR%`
shinyServer(function(input, output, session) {
selected_hits <- "All"
selected_queries <- "All"
selected_hits_pf <- "All"
selected_queries_pf <- "All"
file_selected_hits_pf <- NULL
file_selected_queries_pf <- NULL
file_selected_hits <- NULL
file_selected_queries <- NULL
input_blastn <- data.frame()
filtered_blastn <- data.frame()
plot_blastn <- data.frame()
matrix_blastn <- as.matrix(data.frame())
values <- reactiveValues()
values$blastnFile <- NULL
##################################################################################################################
##################################################################################################################
#
# render UI
#
# tabs:
# A. import
# B. interactive heat map
# C. table
# D. export and static heat map
# E. help
#########################################################
#########################################################
# A. import
#########################################################
# 1. renderImport - ui.R file
output$renderImport <- renderUI({
renderImport_tc <- tryCatch({
values$go <- paste0("go",runif(1))
fluidRow(
column(10,
h3("Import data"),
p("Default BLAST output is assumed with the order of the columns as follows: Query name, hit name, percentage identity, alignment length, mismatches, gaps, query start, query end, hit start, hit end, e-value, bitscore."),
fileInput('blastnFile','Choose BLAST output'),
h4("Test data"),
p("Nucleotide BLAST of cloned and predicted Solanaceae R genes against self."),
checkboxInput('testData','Use test data?'),
br(),
prefilterOpts()
)
)
}, error = function(err) {
msg <- paste0(err)
print(msg)
}, warning = function(warning) {
msg <- paste0("WARNING: ",warning)
print(msg)
})
})
prefilterOpts <- reactive({
uiOutput('renderPrefilter')
})
#########################################################
# 2. renderPrefilter - ui.R file
output$renderPrefilter <- renderUI({
renderPrefilter_tc <- tryCatch({
if (is.null(values$blastnFile))
return(NULL)
if (nrow(input_blastn) == 0)
return(NULL)
if (is.null(values$mat_size))
return(NULL)
if (values$mat_size <= 50000) {
values$prefilter <- FALSE
mainPanel(width=14,
h4("Matrix size prediction"),
p(paste0("Predicted matrix size: ",as.character(values$mat_size))),
p("Matrix size OK")
)
} else {
values$prefilter <- TRUE
mainPanel(width=14,
h4("Matrix size prediction"),
p(paste0("Predicted matrix size: ",as.character(values$mat_size))),
p(paste0("Matrix size not OK - import smaller data set or filter current data set to \u2264 50,000 matrix cells")),
br(),
checkboxInput('filterOptions','Filter current data set?',value=FALSE),
br(),
uiOutput('renderFilterOptions')
)
}
}, error = function(err) {
msg <- paste0(err)
print(msg)
}, warning = function(warning) {
msg <- paste0("WARNING: ",warning)
print(msg)
})
})
#########################################################
# 3. renderFilterOptions - from output$renderPrefilter
output$renderFilterOptions <- renderUI({
renderFilterOptions_tc <- tryCatch({
if (is.null(values$blastnFile))
return(NULL)
values$filterOptions <- input$filterOptions
if (is.null(values$filterOptions))
return(NULL)
if (!values$filterOptions)
return(NULL)
if (values$filterOptions) {
uiOutput('renderOptions')
}
}, error = function(err) {
msg <- paste0(err)
print(msg)
}, warning = function(warning) {
msg <- paste0("WARNING: ",warning)
print(msg)
})
})
output$sidebarOptions <- renderUI({
if (is.null(values$blastnFile))
return(NULL)
if (is.null(values$filterOptions) || !values$filterOptions)
return(NULL)
if (values$mat_size < 50000) {
return(NULL)
} else {
############################
# update slider inputs with minimum and maximum values
min_hitRange <- min(input_blastn$hit_start,input_blastn$hit_end)
max_hitRange <- max(input_blastn$hit_start,input_blastn$hit_end)
min_queryRange <- min(input_blastn$query_start,input_blastn$query_end)
max_queryRange <- max(input_blastn$query_start,input_blastn$query_end)
mainPanel(width = 14,
style = "overflow-y:scroll; max-height: 700px",
h3("Filter options"),
selectInput('query_select_pf', 'Select query names', choices = c("All",sort(unique(input_blastn$query))), selected = "", multiple = TRUE,width="90%"),
uiOutput('query_file_pf_resettable'),
selectInput('hit_select_pf', 'Select hit names', choices = c("All",sort(unique(input_blastn$hit))), selected = "", multiple = TRUE,width="90%"),
uiOutput('hit_file_pf_resettable'),
actionButton('query_file_pf_rm','Clear queries',width="50%"),
actionButton('hit_file_pf_rm','Clear hits',width="40%"),
br(),br(),
sliderInput('queryRange_pf', 'Filter on query location', min=min_queryRange, max=max_queryRange, value=c(min_queryRange,max_queryRange),step=1,width="90%",round=TRUE),
sliderInput('hitRange_pf', 'Filter on hit location', min=min_hitRange, max=max_hitRange, value=c(min_hitRange,max_hitRange),step=1,width="90%",round=TRUE),
sliderInput('id_filter_pf', 'Filter on percentage identity', min=min(input_blastn$id), max=max(input_blastn$id), value=c(min(input_blastn$id),max(input_blastn$id)),step=0.1,width="90%"),
sliderInput('alnRange_pf', 'Filter on alignment lengths', min=min(input_blastn$aln.len), max=max(input_blastn$aln.len), value=c(min(input_blastn$aln.len),max(input_blastn$aln.len)),step=1,width="90%",round=TRUE),
sliderInput('bitscore_filter_pf', 'Filter on bitscore', min=min(input_blastn$bitscore), max=max(input_blastn$bitscore), value=c(min(input_blastn$bitscore),max(input_blastn$bitscore)),step=1,width="90%",round=TRUE),
sliderInput('mismatch_filter_pf', 'Filter on mismatches', min=min(input_blastn$mismatch), max=max(input_blastn$mismatch), value=c(min(input_blastn$mismatch),max(input_blastn$mismatch)),step=1,width="90%",round=TRUE),
sliderInput('gaps_filter_pf', 'Filter on gaps', min=min(input_blastn$gaps), max=max(input_blastn$gaps), value=c(min(input_blastn$gaps),max(input_blastn$gaps)),step=1,width="90%",round=TRUE),
sliderInput('evalue_filter_pf', 'Maximum e-value', min=min(input_blastn$evalue), max=max(input_blastn$evalue), value=max(input_blastn$evalue),step=max(input_blastn$evalue)/100,width="90%"),
br()
)
}
})
#########################################################
# 4. renderOptions - from output$renderFilterOptions
output$renderOptions <- renderUI({
renderOptions_tc <- tryCatch({
if (is.null(values$blastnFile))
return(NULL)
if (is.null(values$filterOptions))
return(NULL)
mainPanel(width=12,
h4("New matrix summary"),
br(),
htmlOutput('matrixConfirmation'),
tags$head(tags$style("#matrixConfirmation{color: red;
font-size: 18px;
font-style: bold;
}"
)
),
br(),
uiOutput('matrixSummary'),
br()
)
}, error = function(err) {
msg <- paste0(err)
print(msg)
}, warning = function(warning) {
msg <- paste0("WARNING: ",warning)
print(msg)
})
})
#########################################################
# 5. resettable inputs - from output$renderOptions
output$query_file_pf_resettable <- renderUI({
input$query_file_pf_rm
fileInput('query_file_pf','Upload file with query names')
})
output$hit_file_pf_resettable <- renderUI({
input$hit_file_pf_rm
fileInput('hit_file_pf','Upload file with hit names')
})
#########################################################
# 6. matrix summaries - from output$renderOptions
output$matrixSummary <- renderUI({
if (is.null(values$blastnFile))
return(NULL)
if (is.null(values$filterOptions))
return(NULL)
dPrefilter()
tableOutput('matrixSummaryTable')
})
output$matrixSummaryTable <- renderTable({
matrixSummary_tc <- tryCatch({
if (is.null(values$blastnFile))
return(NULL)
if (is.null(values$filterOptions))
return(NULL)
if (nrow(filtered_blastn) == 0)
return(NULL)
queries <- toString(unique(filtered_blastn$query))
num_queries <- length(unique(filtered_blastn$query))
hits <- toString(unique(filtered_blastn$hit))
num_hits <- length(unique(filtered_blastn$hit))
if (num_queries > 1000)
output_queries <- ">1000 queries"
else {
output_queries <- queries
}
if (num_hits > 1000)
output_hits <- ">1000 hits"
else {
output_hits <- hits
}
table_summary <- data.frame(c(length(filtered_blastn$query),values$new_mat_size,num_queries,num_hits),c("Total number of BLAST alignments","Matrix size calculated from: query sequences x hit sequences",output_queries,output_hits),row.names=c("BLAST alignments","Matrix size","Query sequences","Hit sequences"))
names(table_summary) <- c("Number","Information/Sequences")
return(table_summary)
}, error = function(err) {
msg <- paste0(err)
print(msg)
}, warning = function(warning) {
msg <- paste0("WARNING: ",warning)
print(msg)
})
})
output$matrixConfirmation <- renderText({
matrixConfirmation_tc <- tryCatch({
if (is.null(values$blastnFile))
return(NULL)
if (is.null(values$filterOptions))
return(NULL)
if (nrow(filtered_blastn) == 0)
return(NULL)
if (values$new_mat_size < 4) {
"Matrix size too small"
} else if (values$new_mat_size >= 50000) {
"Matrix size too big"
} else {
"Matrix size OK"
}
}, error = function(err) {
msg <- paste0(err)
print(msg)
}, warning = function(warning) {
msg <- paste0("WARNING: ",warning)
print(msg)
})
})
#########################################################
#########################################################
# B. interactive heat map
#########################################################
# 1. heatMapOptions - ui.R file
output$heatMapOptions <- renderUI({
heatMapOptions_tc <- tryCatch({
if (is.null(values$blastnFile))
return(NULL)
if (nrow(input_blastn) == 0)
return(NULL)
dPrefilter()
if (values$new_mat_size > 50000) {
return(NULL)
} else {
selected_hits <<- "All"
selected_queries <<- "All"
############################
# update slider inputs with minimum and maximum values
min_hitRange <- min(filtered_blastn$hit_start,filtered_blastn$hit_end)
max_hitRange <- max(filtered_blastn$hit_start,filtered_blastn$hit_end)
min_queryRange <- min(filtered_blastn$query_start,filtered_blastn$query_end)
max_queryRange <- max(filtered_blastn$query_start,filtered_blastn$query_end)
mainPanel(width=14,style = "overflow-y:scroll; max-height: 400px",
h3("Heat map options"),
checkboxInput('bestBlast','Best BLAST only?', value = FALSE),
selectInput('display', 'BLAST values to visualise:', c("Percentage identity"="id", "Bit score"="bitscore", "Alignment length"="aln.len", "Query start"="query_start", "Query end"="query_end", "Hit start"="hit_start", "Hit end"="hit_end"), 'id',width="90%"),
sliderInput('queryRange', 'Filter on query location', min=min_queryRange, max=max_queryRange, value=c(min_queryRange,max_queryRange),step=1,width="90%",round=TRUE),
sliderInput('hitRange', 'Filter on hit location', min=min_hitRange, max=max_hitRange, value=c(min_hitRange,max_hitRange),step=1,width="90%",round=TRUE),
sliderInput('id_filter', 'Filter on percentage identity', min=min(filtered_blastn$id), max=max(filtered_blastn$id), value=c(min(filtered_blastn$id),max(filtered_blastn$id)),step=0.1,width="90%"),
sliderInput('alnRange', 'Filter on alignment lengths', min=min(filtered_blastn$aln.len), max=max(filtered_blastn$aln.len), value=c(min(filtered_blastn$aln.len),max(filtered_blastn$aln.len)),step=1,width="90%",round=TRUE),
sliderInput('bitscore_filter', 'Filter on bitscore', min=min(filtered_blastn$bitscore), max=max(filtered_blastn$bitscore), value=c(min(filtered_blastn$bitscore),max(filtered_blastn$bitscore)),step=1,width="90%",round=TRUE),
sliderInput('mismatch_filter', 'Filter on mismatches', min=min(filtered_blastn$mismatch), max=max(filtered_blastn$mismatch), value=c(min(filtered_blastn$mismatch),max(filtered_blastn$mismatch)),step=1,width="90%",round=TRUE),
sliderInput('gaps_filter', 'Filter on gaps', min=min(filtered_blastn$gaps), max=max(filtered_blastn$gaps), value=c(min(filtered_blastn$gaps),max(filtered_blastn$gaps)),step=1,width="90%",round=TRUE),
sliderInput('evalue_filter', 'Maximum e-value', min=min(filtered_blastn$evalue), max=max(filtered_blastn$evalue), value=max(filtered_blastn$evalue),step=max(filtered_blastn$evalue)/100,width="90%"),
selectInput('query_select', 'Select query names', choices = c("All",sort(unique(filtered_blastn$query))), selected = "", multiple = TRUE,width="90%"),
uiOutput('query_file_resettable'),
selectInput('hit_select', 'Select hit names', choices = c("All",sort(unique(filtered_blastn$hit))), selected = "", multiple = TRUE,width="90%"),
uiOutput('hit_file_resettable'),
actionButton('query_file_rm','Clear queries',width="50%"),actionButton('hit_file_rm','Clear hits',width="40%")
)
}
}, error = function(err) {
msg <- paste0("output$heatMapOptions: ",err)
print(msg)
}, warning = function(warning) {
msg <- paste0("output$heatMapOptions: ",warning)
print(msg)
})
})
output$displayOptions <- renderUI({
if (is.null(values$blastnFile))
return(NULL)
if (nrow(input_blastn) == 0)
return(NULL)
if (values$new_mat_size > 50000) {
return(NULL)
} else {
mainPanel(width=14,style = "overflow-y:scroll; max-height: 300px",
h3("Display options"),
selectInput('dendrogram', 'Dendrogram', c(None='none', Row='row', Column='column', Both='both'), 'both',width="90%"),
sliderInput('plotHeight','Plot height (px)',min=400,max=3000,value=800,step=100,width="90%",round=TRUE),
sliderInput('width','Margin width (px)',min=60,max=400,value=180,step=20,width="90%",round=TRUE),
sliderInput('height','Margin height (px)',min=60,max=400,value=120,step=20,width="90%",round=TRUE),
sliderInput('fontSize','Font size (pt)',min=2,max=40,value=10,step=2,width="90%",round=TRUE)
)
}
})
#########################################################
# 2. resettable inputs - from output$heatmapOptions
output$query_file_resettable <- renderUI({
input$query_file_rm
fileInput('query_file','Upload file with query names')
})
output$hit_file_resettable <- renderUI({
input$hit_file_rm
fileInput('hit_file','Upload file with hit names')
})
#########################################################
# 3. renderInteractive - ui.R file
output$renderInteractive <- renderUI({
if (is.null(values$blastnFile))
return(NULL)
dPrefilter()
if (values$new_mat_size > 50000) {
return(h3('Prefilter matrix'))
} else {
mainPanel(width=14,
uiOutput('heatmapPanel')
)
}
})
output$heatmapPanel <- renderUI({
plotHeatmap()
})
#########################################################
# 5. plotHeatmap - from output$heatmap
plotHeatmap <- eventReactive(values$go, {
d3Heatmap_tc <- tryCatch({
if (is.null(values$blastnFile))
return(NULL)
height <- renderHeight()
if (is.null(height))
return(NULL)
d3heatmapOutput('heatmap',width="100%",height=height)
}, error = function(err) {
msg <- paste0(err)
print(msg)
}, warning = function(warning) {
msg <- paste0("WARNING: ",warning)
print(msg)
})
})
#########################################################
# 4. heatmap - from output$renderInteractive
output$heatmap <- renderD3heatmap({
if (is.null(values$blastnFile))
return(NULL)
dDataframe()
if (length(matrix_blastn) == 0)
return(NULL)
d3heatmap(matrix_blastn,xaxis_height=marginHeight(),yaxis_width=marginWidth(),xaxis_font_size=fontSize(),yaxis_font_size=fontSize(),dendrogram=dendrogram(),height=renderHeight(),colors=rev(brewer.pal(n = 9, "Spectral")),anim_duration=0)
})
marginHeight <- eventReactive(values$go, {
input$height
})
marginWidth <- eventReactive(values$go, {
input$width
})
fontSize <- eventReactive(values$go, {
input$fontSize
})
dendrogram <- eventReactive(values$go, {
input$dendrogram
})
#########################################################
#########################################################
# C. table
#########################################################
# 1. renderTable - ui.R file
output$renderTable <- renderUI({
renderTable_tc <- tryCatch({
if (is.null(values$blastnFile))
return(NULL)
mainPanel(width=14,
uiOutput('preTable')
)
}, error = function(err) {
msg <- paste0(err)
print(msg)
}, warning = function(warning) {
msg <- paste0("WARNING: ",warning)
print(msg)
})
})
#########################################################
# 2. preTable - from output$renderTable
output$preTable <- renderUI({
if (is.null(values$blastnFile))
return(NULL)
if (is.null(values$blastnFile))
return(NULL)
dataTableOutput('table')
})
#########################################################
# 4. table - from output$renderTable
output$table <- renderDataTable({
outputTable()
}, options = list(
pageLength = 10
))
#########################################################
# 5. outputTable - from out$table
outputTable <- eventReactive(values$tableGo, {
if (is.null(values$blastnFile))
return(NULL)
if (nrow(plot_blastn) > 0) {
df <- plot_blastn
} else {
if (nrow(filtered_blastn) > 0) {
df <- filtered_blastn
} else {
df <- input_blastn
}
}
df <- df[c(1:12)]
df <- df[order(df$query,df$hit),]
return(df)
})
#########################################################
#########################################################
# D. export and static heat map
#########################################################
# 1. renderExport - ui.R file
output$renderExport <- renderUI({
if (is.null(values$blastnFile))
return(NULL)
if (values$new_mat_size >= 50000) {
mainPanel(width=14,
h3("Download options"),
downloadButton('downloadData','Download data in TSV or CSV format'),
br(),
br(),
p("Prefilter matrix before accessing heat map download options.")
)
} else {
mainPanel(width=14,
h3("Download options"),
downloadButton('downloadData','Download data in TSV or CSV format'),
br(),
br(),
uiOutput('renderPreview'),
br()
)
}
})
#########################################################
# 2. renderPreview - from output$renderExport
output$renderPreview <- renderUI({
if (is.null(values$blastnFile))
return(NULL)
if (is.null(values$bestBlast)) {
textOutput('renderFail')
} else {
uiOutput('renderExportOptions')
}
})
#########################################################
# 3. renderFail - from output$renderPreview
output$renderFail <- renderText({
if (is.null(values$blastnFile))
return(NULL)
"Navigate to interactive heat map before previewing static heat map and accessing heat map download options."
})
#########################################################
# 4. renderExportOptions - from output$renderPreview
output$renderExportOptions <- renderUI({
if (is.null(values$blastnFile))
return(NULL)
mainPanel(width=14,
downloadButton('downloadHeatmap','Download interactive heat map in HTML format'),
br(),
br(),
selectInput("format", "File type for static heat map", choices=c("jpeg","png","tiff"), selected = "png", multiple = FALSE, selectize = TRUE),
downloadButton('downloadHeatmap2','Download static heat map'),
br(),
br(),
br(),
h3("Static heat map preview"),
br(),
imageOutput('heatmap2')
)
})
#########################################################
# 5. heatmap2 - from output$renderExportOptions
output$heatmap2 <- renderImage({
if (is.null(values$blastnFile))
return(NULL)
renderHeatmap()
},deleteFile=TRUE)
#########################################################
# 6. renderHeatmap - from output$heatmap2
renderHeatmap <- reactive({
if (is.null(values$blastnFile))
return(NULL)
file <- tempfile(fileext=".png")
png(file, height=renderHeightOut(), width=renderWidth(), res=input$res, units="in")
par(mai=c(input$height/input$res,input$width/input$res,input$height/input$res,input$width/input$res))
par(pin=c(renderWidth()-input$width/(input$res/2),renderHeightOut()-input$height/(input$res/2)))
colPalette <- colorRampPalette(rev(brewer.pal(n = 9, "Spectral")))
heatmap_plot <- tryCatch({
par(cex.lab=input$titleSize_static)
heatmap.2(matrix_blastn,dendrogram=input$dendrogram_static,col=colPalette(256), sepcolor = "white", sepwidth = c(0.0001,0.0001),colsep=1:ncol(matrix_blastn),rowsep=1:nrow(matrix_blastn),trace="none",margins=c(input$height_static,input$width_static),cexRow=input$fontSize_static/10,cexCol=input$fontSize_static/10,density.info = "none",key.xlab=paste("BLAST attribute:",input$display), srtCol=45, key.title="",lwid=c(input$keysize_width,10),lhei=c(input$keysize_height,10))
}, error = function(err) {
msg <- paste0("MY_ERROR: ",err)
return(msg)
})
dev.off()
list(src=file,width=renderWidthPx(),height=renderHeightOutPx())
})
#########################################################
#########################################################
# E. help
#########################################################
# 1. renderHelp - from ui.R
output$renderHelp <- renderUI({
mainPanel(width=14,
h3("General help", id="generalhelp"),
p("BLASTmap is a Shiny web app designed to visualise BLAST data as interactive heat maps. The only input required is a BLAST data set (additional details given below). The heat map can be navigated and filtered to display query-hit pairs of interest. There are a number of export options: data table, interactive heat map and static heat map. For optimum BLASTmap display and performance, Chrome, Vivaldi and Opera are the recommended internet browsers. Please send any queries, issues or requests to", a("Katie Baker", href="mailto:[email protected]"),"."),
hr(),
h3("Import help", id="importhelp"),
p("Data is imported in the 'Import' tab. The input required is tab- or column-delimited BLAST output in the form: Query name, hit name, percentage identity, alignment length, mismatches, gaps, query start, query end, hit start, hit end, e-value, bitscore. Import data using the 'Choose File' button or try out BLASTmap using test data (select the test data checkbox)."),
#br(),
p("Once uploaded, the number of matrix cells in the heat map is calculated by multiplying the number of query sequences by the number of hit sequences. If the data set meets the matrix size limitation (50,000 cells), a heat map may be generated with the data. However, if the data exceeds this, you have the option to filter the current data set. The data may be filtered on query/hit names by selecting names from a dropdown box and/or importing files with a list of query/hit names (one name per line). In addition to filtering by query/hit name, BLAST output attributes may be used to filter the dataset by using sliders to select thresholds, e.g. only visualising BLAST pairs which have fewer than 3 mismatches. As filtering options are applied, the number of query and hit sequences, and therefore the matrix size, is updated and once the matrix size decreases below 50,000 a heat map can be generated."),
hr(),
h3("Heat map help", id="heatmaphelp"),
p("The heat map is generated in the 'Interactive heat map' tab and is rendered after clicking 'Plot heat map', each time a filtering parameter is applied this button must be pressed. The queries are on the y-axis and hits are on the x-axis. The heat map is interactive, so can be zoomed into by drawing a box around the cells using the mouse. Selecting a hit or query highlights that row or column. Mousing over each cell gives the query and hit name, as well as the value of the BLAST attribute being visualised."),
h4("Heat map options"),
p("You can select from a dropdown box which BLAST attribute to visualise, the default is percentage identity and the other options are bit score, alignment length, query start, query end, hit start and hit end. There is an option to visualise only best BLAST pairs, the default is to visualise all BLAST hits for each query. Each BLAST attribute can be filtered on, using the sliders to select ranges. Only BLAST pairs within these ranges will be visualised, for example, if you are only interested in the longest alignment lengths the slider can be used to exclude the shortest query-hit alignments. Query and hit sequences can also be selected by name, either using dropdown box or uploading a files with a list of query/hit names (one name per line). To remove the name filtering, just click the 'Clear queries' or 'Clear hits' button. When filtering on query/hit names, at least two queries/hits must be selected otherwise the heat map cannot be generated."),
h4("Display options"),
p("By default the data set is clustered and dendrograms accompany the heat map for both rows and columns. The dendrogram display can be changed by using a dropdown box to select only rows, only columns, no dendrogram or both (default). The plot height can be altering using a slider, the plot width cannot be changed manually and automatically extends to the width of the window. The query/hit label font size can be increased or decreased using a slider. When changing the font size, the query/hit names may extend beyond the plot boundaries. The margin width/height sliders can be used to adjust the dimensions of the margins to fully display the query/hit names."),
hr(),
h3("Table help", id="tablehelp"),
p("The 'BLAST output' tab gives the BLAST data of all the query-hit pairs currently being visualised in the interactive heat map. If an interactive heat map has not been generated yet, for instance if the data set is larger than 50,000 cells and requires pre-filtering, all of the BLAST data is displayed in this tab. The data can be sorted by each column and filtered using the text boxes at the bottom of the table or by using the search box in the top right corner."),
hr(),
h3("Export help", id="exporthelp"),
p("Data can be exported in the 'Export' tab. Firstly, the file name can be set using the text input box at the top of the left sidebar, this file name is applied to all of the export options. The data table (which can be explored in the 'BLAST output' tab) can be exported in tab-delimited (TSV) or comma-delimited (CSV) format. The format is selected using the radio buttons on the left sidebar under 'Download options for data table'."),
p("The heat map can be exported in two forms. As an interactive heat map in HTML format which appears exactly as in the 'Interactive heat map' tab or it can also be exported as a static heat map (JPEG, PNG or TIFF format) and appears exactly as given in the preview. The static heat map also has additional output options which changes the heat map appearance. The resolution and the plot dimensions can be altered using sliders. The dendrogram can be set to both axes, only rows, only columns or neither axes. The font sizes of the margins and the key can be changed, as can the margin widths of the plot. Finally, the dendrogram and key dimensions can be changed using sliders."),
hr(),
h3("Links", id="links"),
p(a("BLASTmap on GitHub", href="https://www.github.com/katie-baker/BLASTmap")),
p(a("The James Hutton Institute ICS homepage", href="https://ics.hutton.ac.uk")),
p(a("The James Hutton Institute ICS twitter", href="https://twitter.com/HuttonICS")),
p(a("The James Hutton Institute ICS GitHub", href="https://github.com/HuttonICS")),
p(a("Katie Baker's twitter", href="https://twitter.com/kb_bioinf")),
hr()
)
})
##################################################################################################################
##################################################################################################################
#
# reactive functions
#
# create dataframes
# dParse()
# dPrefilter()
# dDataframe()
#########################################################
# import data
dParse <- reactive({
if (input$testData) {
blastn <- read.table("test.blastn", header=FALSE, sep="\t", stringsAsFactors=FALSE, comment.char="")
} else {
if (is.null(values$blastnFile))
return(NULL)
if (input$sep == "Tab") {
blastn <- read.table(input$blastnFile$datapath, header=FALSE, sep="\t", stringsAsFactors=FALSE, comment.char="")
} else if (input$sep == "Comma") {
blastn <- read.table(input$blastnFile$datapath, header=FALSE, sep=",", stringsAsFactors=FALSE, comment.char="")
}
}
############################
# validate input
validate(
need(ncol(blastn) == 12, "BLAST file must be standard tab- or comma-delimited format with 12 columns corresponding to: Query name, hit name, percentage identity, alignment length, mismatches, gaps, query start, query end, hit start, hit end, e-value, bit score.")
)
############################
# rename columns
names(blastn) <- c("query","hit","id","aln.len","mismatch","gaps","query_start","query_end","hit_start","hit_end","evalue","bitscore")
validate(
need(is.numeric(blastn$id), "Column 3 should be numeric and correspond to percentage identity."),
need(is.numeric(blastn$aln.len), "Column 4 should be numeric and correspond to alignment length."),
need(is.numeric(blastn$mismatch), "Column 5 should be numeric and correspond to mismatches."),
need(is.numeric(blastn$gaps), "Column 6 should be numeric and correspond to gaps."),
need(is.numeric(blastn$query_start), "Column 7 should be numeric and correspond to query start."),
need(is.numeric(blastn$query_end), "Column 8 should be numeric and correspond to query end."),
need(is.numeric(blastn$hit_start), "Column 9 should be numeric and correspond to hit start."),
need(is.numeric(blastn$hit_end), "Column 10 should be numeric and correspond to hit end."),
need(is.numeric(blastn$evalue), "Column 11 should be numeric and correspond to e-value."),
need(is.numeric(blastn$bitscore), "Column 12 should be numeric and correspond to bit score.")
)
blastn$pair <- paste(blastn$query,blastn$hit,sep="-")
blastn <- blastn[order(blastn$pair,-blastn$bitscore),]
blastn <- blastn[!duplicated(blastn$pair),]
############################
# check matrix size
num_q <- length(unique(blastn$query))
num_h <- length(unique(blastn$hit))
values$mat_size <- num_q*num_h
values$new_mat_size <- num_q*num_h
input_blastn <<- blastn
return(blastn)
})
#########################################################
# prefilter the data based on import options
dPrefilter <- reactive({
if (is.null(values$blastnFile))
return(NULL)
if (nrow(input_blastn) == 0)
return(NULL)
if (is.null(values$filterOptions) || values$mat_size < 50000) {
filtered_blastn <<- input_blastn
} else if (values$filterOptions) {
############################
# get input variables
hit_min <- min(input$hitRange_pf)
hit_max <- max(input$hitRange_pf)
query_min <- min(input$queryRange_pf)
query_max <- max(input$queryRange_pf)
aln_min <- min(input$alnRange_pf)
aln_max <- max(input$alnRange_pf)
id_min <- min(input$id_filter_pf)
id_max <- max(input$id_filter_pf)
bitscore_min <- min(input$bitscore_filter_pf)
bitscore_max <- max(input$bitscore_filter_pf)
mismatch_min <- min(input$mismatch_filter_pf)
mismatch_max <- max(input$mismatch_filter_pf)
gaps_min <- min(input$gaps_filter_pf)
gaps_max <- max(input$gaps_filter_pf)
evalue_max <- max(input$evalue_filter_pf)
selected_hits_pf <<- input$hit_select_pf
selected_queries_pf <<- input$query_select_pf
############################
# set up hit selector
# check for file listing gene names first
hit.file <- values$hit_file_pf
if (!is.null(hit.file)) {
hit_table <- read.table(hit.file, header=FALSE, stringsAsFactors=FALSE, comment.char="")
file_selected_hits_pf <<- as.list(hit_table$V1)
} else {
if ( length(selected_hits_pf) == 0 ) {
selected_hits_pf <<- unique(input_blastn$hit)
} else if ("All" %in% selected_hits_pf) {
selected_hits_pf <<- unique(input_blastn$hit)
updateSelectInput(session, "hit_select_pf", choices = c("All",sort(unique(input_blastn$hit))), selected = "" )
} else if ( length(selected_hits_pf) == 1 ) {
if (selected_hits_pf == "All") {
selected_hits_pf <<- unique(input_blastn$hit)
updateSelectInput(session, "hit_select_pf", choices = c("All",sort(unique(input_blastn$hit))), selected = "")
} else {
validate(
need(input$hit_select_pf <= 2, "Select at least two hits.")
)
}
} else {
selected_hits_pf <<- input$hit_select_pf
updateSelectInput(session, "hit_select_pf", choices = c("All",sort(unique(input_blastn$hit))), selected = input$hit_select_pf)
}
}
if (!is.null(file_selected_hits_pf)) {
if (!is.null(selected_hits_pf)) {
selected_hits_pf <<- c(selected_hits_pf,file_selected_hits_pf)
} else {
selected_hits_pf <<- file_selected_hits_pf
}
}
############################
# set up query selector
# check for file listing gene names first
query.file <- values$query_file_pf
if (!is.null(query.file)) {
query_table <- read.table(query.file, header=FALSE, stringsAsFactors=FALSE, comment.char="")
file_selected_queries_pf <<- as.list(query_table$V1)
} else {
if ( length(selected_queries_pf) == 0 ) {
selected_queries_pf <<- unique(input_blastn$query)
} else if ("All" %in% selected_queries_pf) {
selected_queries_pf <<- unique(input_blastn$query)
updateSelectInput(session, "query_select_pf", choices = c("All",sort(unique(input_blastn$query))), selected = "" )
} else if ( length(selected_queries_pf) == 1 ) {
if ( selected_queries_pf == "All" ) {
selected_queries_pf <<- unique(input_blastn$query)
updateSelectInput(session, "query_select_pf", choices = c("All",sort(unique(input_blastn$query))), selected = "")
} else {
validate(
need(input$query_select_pf <= 2, "Select at least two queries.")
)
}
} else {
selected_queries_pf <<- input$query_select_pf
updateSelectInput(session, "query_select_pf", choices = c("All",sort(unique(input_blastn$query))), selected = input$query_select_pf)
}
}
if (!is.null(query.file)) {
if (!is.null(selected_queries_pf)) {
selected_queries_pf <<- c(selected_queries_pf,file_selected_queries_pf)
} else {
selected_queries_pf <<- file_selected_queries_pf
}
}
############################
# filter data frame based on input filtering
filtered_blastn <<- input_blastn[input_blastn$query %in% selected_queries_pf
& input_blastn$hit %in% selected_hits_pf
& input_blastn$bitscore>=bitscore_min
& input_blastn$bitscore<=bitscore_max
& input_blastn$mismatch>=mismatch_min
& input_blastn$mismatch<=mismatch_max
& input_blastn$gaps>=gaps_min
& input_blastn$gaps<=gaps_max
& input_blastn$evalue<=evalue_max
& input_blastn$id>=id_min
& input_blastn$id<=id_max
& input_blastn$hit_start>=hit_min
& input_blastn$hit_end<=hit_max
& input_blastn$query_start>=query_min
& input_blastn$query_end<=query_max
& input_blastn$aln.len>=aln_min
& input_blastn$aln.len<=aln_max
,]
} else {
return(NULL)
}
num_q <- length(unique(filtered_blastn$query))
num_h <- length(unique(filtered_blastn$hit))
values$new_mat_size <- num_q*num_h
return(filtered_blastn)
})
#########################################################
# filter data for interactive heat map