-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathevaluate.py
142 lines (120 loc) · 6.08 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import numpy as np
import os
from styler import STYLER
from loss import STYLERLoss, DomainAdversarialTrainingLoss
from dataset import Dataset
import hparams as hp
import utils
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def get_model(num):
checkpoint_path = os.path.join(
hp.checkpoint_path(), "checkpoint_{}.pth.tar".format(num))
model = nn.DataParallel(STYLER())
model.load_state_dict(torch.load(checkpoint_path)['model'])
model.requires_grad = False
model.eval()
return model
def evaluate(model, step, vocoder=None):
torch.manual_seed(0)
# Get dataset
dataset = Dataset("val.txt", sort=False)
loader = DataLoader(dataset, batch_size=hp.batch_size**2, shuffle=False,
collate_fn=dataset.collate_fn, drop_last=False, num_workers=0, )
# Get loss function
Loss = STYLERLoss().to(device)
DATLoss = DomainAdversarialTrainingLoss().to(device)
# Evaluation
d_l = []
f_l = []
e_l = []
cl_a = []
cl_a_dat = []
mel_l = []
mel_p_l = []
mel_n_l = []
mel_p_n_l = []
current_step = 0
idx = 0
for i, batchs in enumerate(loader):
for j, data_of_batch in enumerate(batchs):
# Get Data
id_ = data_of_batch["id"]
text = torch.from_numpy(data_of_batch["text"]).long().to(device)
mel_target = torch.from_numpy(
data_of_batch["mel_target"]).float().to(device)
mel_aug = torch.from_numpy(
data_of_batch["mel_aug"]).float().to(device)
D = torch.from_numpy(data_of_batch["D"]).int().to(device)
log_D = torch.from_numpy(data_of_batch["log_D"]).int().to(device)
f0 = torch.from_numpy(data_of_batch["f0"]).float().to(device)
f0_norm = torch.from_numpy(data_of_batch["f0_norm"]).float().to(device)
f0_norm_aug = torch.from_numpy(data_of_batch["f0_norm_aug"]).float().to(device)
energy = torch.from_numpy(
data_of_batch["energy"]).float().to(device)
energy_input = torch.from_numpy(
data_of_batch["energy_input"]).float().to(device)
energy_input_aug = torch.from_numpy(
data_of_batch["energy_input_aug"]).float().to(device)
speaker_embed = torch.from_numpy(
data_of_batch["speaker_embed"]).float().to(device)
src_len = torch.from_numpy(
data_of_batch["src_len"]).long().to(device)
mel_len = torch.from_numpy(
data_of_batch["mel_len"]).long().to(device)
max_src_len = np.max(data_of_batch["src_len"]).astype(np.int32)
max_mel_len = np.max(data_of_batch["mel_len"]).astype(np.int32)
with torch.no_grad():
## Forward
mel_outputs, mel_postnet_outputs, log_duration_output, f0_output, energy_output, src_mask, mel_mask, _, aug_posteriors = model(
text, mel_target, mel_aug, f0_norm, energy_input, src_len, mel_len, D, f0, energy, max_src_len, max_mel_len, speaker_embed=speaker_embed)
# Cal Loss Clean
mel_output, mel_postnet_output = mel_outputs[0], mel_postnet_outputs[0]
mel_loss, mel_postnet_loss, d_loss, f_loss, e_loss, classifier_loss_a = Loss(
log_duration_output, log_D, f0_output, f0, energy_output, energy, mel_output, mel_postnet_output, mel_target, ~src_mask, ~mel_mask, src_len, mel_len,\
aug_posteriors, torch.zeros(mel_target.size(0)).long().to(device))
# Cal Loss Noisy
mel_output_noisy, mel_postnet_output_noisy = mel_outputs[1], mel_postnet_outputs[1]
mel_noisy_loss, mel_postnet_noisy_loss = Loss.cal_mel_loss(mel_output_noisy, mel_postnet_output_noisy, mel_aug, ~mel_mask)
# Forward DAT
enc_cat = model.module.style_modeling.style_encoder.encoder_input_cat(mel_aug, f0_norm_aug, energy_input_aug, mel_aug)
duration_encoding, pitch_encoding, energy_encoding, _ = model.module.style_modeling.style_encoder.audio_encoder(enc_cat, mel_len, src_len, mask=None)
aug_posterior_d = model.module.style_modeling.augmentation_classifier_d(duration_encoding)
aug_posterior_p = model.module.style_modeling.augmentation_classifier_p(pitch_encoding)
aug_posterior_e = model.module.style_modeling.augmentation_classifier_e(energy_encoding)
# Cal Loss DAT
classifier_loss_a_dat = DATLoss((aug_posterior_d, aug_posterior_p, aug_posterior_e), torch.ones(mel_target.size(0)).long().to(device))
d_l.append(d_loss.item())
f_l.append(f_loss.item())
e_l.append(e_loss.item())
cl_a.append(classifier_loss_a.item())
cl_a_dat.append(classifier_loss_a_dat.item())
mel_l.append(mel_loss.item())
mel_p_l.append(mel_postnet_loss.item())
mel_n_l.append(mel_noisy_loss.item())
mel_p_n_l.append(mel_postnet_noisy_loss.item())
current_step += 1
d_l = sum(d_l) / len(d_l)
f_l = sum(f_l) / len(f_l)
e_l = sum(e_l) / len(e_l)
cl_a = sum(cl_a) / len(cl_a)
cl_a_dat = sum(cl_a_dat) / len(cl_a_dat)
mel_l = sum(mel_l) / len(mel_l)
mel_p_l = sum(mel_p_l) / len(mel_p_l)
mel_n_l = sum(mel_n_l) / len(mel_n_l)
mel_p_n_l = sum(mel_p_n_l) / len(mel_p_n_l)
str1 = "STYLER Step {},".format(step)
str2 = "Duration Loss: {}".format(d_l)
str3 = "F0 Loss: {}".format(f_l)
str4 = "Energy Loss: {}".format(e_l)
str5 = "Mel Loss: {}".format(mel_l)
str6 = "Mel Postnet Loss: {}".format(mel_p_l)
print("\n" + str1)
print(str2)
print(str3)
print(str4)
print(str5)
print(str6)
return d_l, f_l, e_l, cl_a, cl_a_dat, mel_l, mel_p_l, mel_n_l, mel_p_n_l