-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_celeba_aga_AttrFirstLayer.py
259 lines (193 loc) · 7.8 KB
/
train_celeba_aga_AttrFirstLayer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# coding: utf-8
# # Notes
# ### Comments
# - I'm now using LR 2e-3
# -
#
# ### ToDo
# - Try bigger attribute (>1) with final model
# - Select other attr (prefer balanced)
# - Compare the influence flipping attr with/without discriminator
# - Experiments on inputting attr only at first layer of Dec
# - Comparing with other model IcGan (Do we need to do this?)
# In[1]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import skimage
import skimage.transform
import torch
import torch.optim as optim
import torch.nn as nn
from torch.autograd import Variable
from torch.utils.data import DataLoader
from src.celeba_dataset import CelebA
from src.fadernet_aga_AttrFirstLayer import Encoder,Decoder,Discriminator
# get_ipython().run_line_magic('matplotlib', 'inline')
SEED = 1
np.random.seed(SEED)
torch.manual_seed(SEED)
use_cuda = torch.cuda.is_available()
if use_cuda:
torch.cuda.manual_seed(SEED)
data_path = '/workspace/CelebA/data/img/'
spliting_path = '/workspace/CelebA/Eval/list_eval_partition.txt'
attribute_path = '/workspace/CelebA/Anno/list_attr_celeba.txt'
# Training Config
use_cpu_cores = 4
num_epoch = 100
display_step = 100
plot_step = 1000
batch_size = 32
LEARNING_RATE = 2e-4
betas=(0.5, 0.999)
final_lambda = 1e-4
increase_step = 500000
increase_lambda = final_lambda/increase_step
# Logger & Debug
exp_name = 'FaderNet_Male_AttrFirstLayer'
num_test_fig = 10
save_fig = True
save_fig_path = 'fig/'+exp_name+'_step_{}.jpg'
step_msg = 'Epoch {}\tGlobStep {}\tMSE {:.4f}\tBCE {:.4f}\tadv {:.4f}\t'
save_model = True
save_model_interval = 10000
save_model_path = 'checkpoint/'+exp_name+'_{}'
save_log = True
save_log_path = 'log/'+exp_name+'.log'
log_msg = '{},{:.4f},{:.4f},{:.4f}'
if save_log:
log_file = open(save_log_path,'w')
log_file.write('step,MSE,BCE,ADV\n')
# Model Config
target_attr = 'Male'
k_list = [3, 16, 32, 64, 128, 256, 512, 512]
IMAGE_SIZE = 256
num_tags = 2
# # Load Dataset
#
# Currently using single attribute
# In[2]:
# Read the Attribute table & split dataset
attri_table = pd.read_csv(attribute_path,sep=' * ',skiprows=1)
split = pd.read_csv(spliting_path,header=None,sep=' ',index_col=0)
split = split.rename(columns={1:'Set'}).join(attri_table[target_attr])
split[target_attr] = split[target_attr]==1
# Read the spliting table & split dataset
train_set = [(idx.split('.')[0]+'.png',[1*row[target_attr],1*(not row[target_attr])])
for idx,row in split.loc[split['Set']==0].iterrows()]
valid_set = [(idx.split('.')[0]+'.png',[1*row[target_attr],1*(not row[target_attr])])
for idx,row in split.loc[split['Set']==1].iterrows()]
test_set = [(idx.split('.')[0]+'.png',[1*row[target_attr],1*(not row[target_attr])])
for idx,row in split.loc[split['Set']==2].iterrows()]
# Create Dataset
train_set = DataLoader(CelebA(train_set,data_path),
batch_size=batch_size, shuffle=True, num_workers=use_cpu_cores, drop_last=True)
debug_set = DataLoader(CelebA(test_set[:num_test_fig],data_path),
batch_size=num_test_fig, shuffle=False, num_workers=1, drop_last=False)
print('Training 1 epoch =',len(train_set),'steps')
print('Training for',num_epoch*len(train_set),'steps')
del attri_table
del split
# # Load model
# In[ ]:
input_img = Variable(torch.zeros(batch_size, 3, IMAGE_SIZE, IMAGE_SIZE).float(),requires_grad=False)
given_attr = Variable(torch.zeros(batch_size, num_tags),requires_grad=False)
flipped_attr = Variable(torch.zeros(batch_size, num_tags),requires_grad=False)
test_img = Variable(torch.zeros(num_test_fig, 3, IMAGE_SIZE, IMAGE_SIZE).float(),requires_grad=False)
test_attr = Variable(torch.zeros(num_test_fig, num_tags),requires_grad=False)
enc = Encoder(k_list)
dec = Decoder(k_list, num_tags, image_size=IMAGE_SIZE)
dis = Discriminator(num_tags)
reconstruct_loss = nn.MSELoss()
classification_loss = nn.BCEWithLogitsLoss()
if use_cuda:
input_img = input_img.cuda()
given_attr = given_attr.cuda()
flipped_attr = flipped_attr.cuda()
test_img = test_img.cuda()
test_attr = test_attr.cuda()
enc = enc.cuda()
dec = dec.cuda()
reconstruct_loss = reconstruct_loss.cuda()
classification_loss = classification_loss.cuda()
dis = dis.cuda()
opt_enc_dec = optim.Adam(list(enc.parameters()) + list(dec.parameters()), lr=LEARNING_RATE, betas=betas)
opt_dis = optim.Adam(dis.parameters(), lr=LEARNING_RATE, betas=betas)
# # Train model
# In[ ]:
global_step = 0
adversarial_lambda = 0.0
bce_history = []
mse_history = []
adv_history = []
for epoch in range(num_epoch):
for (batch_img,batch_attr) in train_set:
# Load batch
input_img.data.copy_(batch_img)
given_attr.data.copy_(batch_attr)
flipped_attr.data.copy_(1-batch_attr)
# Train Discriminator
opt_dis.zero_grad()
E_x = enc(input_img)
pred_attr = dis(E_x.detach())
dis_loss = classification_loss(pred_attr,given_attr)
dis_loss.backward()
opt_dis.step()
# Train AE
opt_enc_dec.zero_grad()
pred_attr_to_fool = dis(E_x)
reconstruct_img = dec(E_x,given_attr)
adv_loss = classification_loss(pred_attr_to_fool,flipped_attr)
rec_loss = reconstruct_loss(reconstruct_img,input_img)
loss = rec_loss + adversarial_lambda*adv_loss
loss.backward()
opt_enc_dec.step()
# End of step
bce_history.append(dis_loss.cpu().data.numpy()[0])
mse_history.append(rec_loss.cpu().data.numpy()[0])
adv_history.append(adv_loss.cpu().data.numpy()[0])
global_step += 1
### Increase Lambda
if global_step < increase_step:
adversarial_lambda += increase_lambda
### Display progress
if global_step%display_step == 0:
print(step_msg.format(epoch+1,global_step,np.mean(mse_history),np.mean(bce_history),np.mean(adv_history)),
end='\r',flush=True)
if save_log:
print(log_msg.format(global_step,np.mean(mse_history),np.mean(bce_history),np.mean(adv_history)),
end='\n',flush=True,file=log_file)
bce_history = []
mse_history = []
adv_history = []
### Show result
if global_step% plot_step ==0:
# Run test
for (batch_img,batch_attr) in debug_set:
test_img.data.copy_(batch_img)
test_attr.data.copy_(batch_attr)
reconstruct_img = dec(enc(test_img),test_attr)
test_attr.data.copy_(1-batch_attr)
flipped_img = dec(enc(test_img),test_attr)
# Show result
tmp = []
src_image = [(1+img)/2 for img in test_img.cpu().data.numpy().transpose(-4,-2,-1,-3)]
rec_image = [(1+img)/2 for img in reconstruct_img.cpu().data.numpy().transpose(-4,-2,-1,-3)]
flp_image = [(1+img)/2 for img in flipped_img.cpu().data.numpy().transpose(-4,-2,-1,-3)]
tmp.append(np.concatenate(src_image,axis=-2))
tmp.append(np.concatenate(rec_image,axis=-2))
tmp.append(np.concatenate(flp_image,axis=-2))
# fig = plt.figure(figsize=(20, 10))
tmp = np.squeeze(np.concatenate(tmp,axis=-3))
# plt.imshow(tmp)
# plt.show()
if save_fig:
#plt.savefig(save_fig_path.format(global_step),bbox_inches='tight')
plt.imsave(save_fig_path.format(global_step), tmp)
plt.close()
### Save model
if global_step % save_model_interval == 0:
torch.save(enc,save_model_path.format(global_step)+'.enc')
torch.save(dec,save_model_path.format(global_step)+'.dec')