-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
84 lines (67 loc) · 2.92 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import os
import json
AUTOTUNE = tf.data.experimental.AUTOTUNE
def train_convert(file_path):
img = tf.io.read_file(file_path)
img = tf.image.decode_jpeg(img, channels=3)
img = tf.image.resize(img, [32, 32])
img = tf.image.random_flip_left_right(img)
img = (img - 127.5) / 127.5
return img
def create_train_ds(train_dir, batch_size, seed=15):
img_paths = tf.data.Dataset.list_files(str(train_dir))
BUFFER_SIZE = tf.data.experimental.cardinality(img_paths)
img_paths = img_paths.cache().shuffle(BUFFER_SIZE, seed=seed)
ds = img_paths.map(train_convert, num_parallel_calls=AUTOTUNE).batch(
batch_size, drop_remainder=True, num_parallel_calls=AUTOTUNE).prefetch(
AUTOTUNE)
print('Train dataset size: {}'.format(BUFFER_SIZE))
print('Batches: {}'.format(tf.data.experimental.cardinality(ds)))
return ds
def create_cifar_ds(images, batch_size, seed=15):
BUFFER_SIZE = images.shape[0]
images = tf.data.Dataset.from_tensor_slices(images)
ds = images.cache().shuffle(
BUFFER_SIZE, seed=seed).batch(batch_size,
drop_remainder=True,
num_parallel_calls=AUTOTUNE).prefetch(AUTOTUNE)
print('Train dataset size: {}'.format(BUFFER_SIZE))
print('Batches: {}'.format(tf.data.experimental.cardinality(ds)))
return ds
def save_hparams(hparams, model_dir, model_name):
json_hparams = json.dumps(hparams)
f = open(os.path.join(model_dir, '{}_hparams.json'.format(model_name)), 'w')
f.write(json_hparams)
f.close()
def generate_and_save_images(model, epoch, noise, direct, img_size=32, f_size=2.88):
predictions = model(noise, training=False)
gen_img = tf.clip_by_value(predictions[0] * 127.5 + 127.5, 0.0, 255.0)
gen_img = tf.cast(gen_img, tf.uint8)
fig = plt.figure(figsize=(f_size, f_size))
for i in range(gen_img.shape[0]):
plt.subplot(8, 8, i+1)
plt.imshow(gen_img[i, :, :, :])
plt.axis('off')
plt.subplots_adjust(wspace=0, hspace=0, left=0, right=1, bottom=0, top=1)
path = os.path.join(direct, '{:04d}.png'.format(epoch))
plt.savefig(path)
# Clear the current axes.
plt.cla()
# Clear the current figure.
plt.clf()
# Closes all the figure windows.
plt.close('all')
def gradient_penalty(critic, real_samples, fake_samples):
alpha = tf.random.uniform([real_samples.shape[0], 1, 1, 1], minval=0., maxval=1.)
diff = fake_samples - real_samples
interpolation = real_samples + alpha * diff
with tf.GradientTape() as gradient_tape:
gradient_tape.watch(interpolation)
pred = critic(interpolation, training=True)
gradients = gradient_tape.gradient(pred[0], [interpolation])[0]
norm = tf.sqrt(tf.reduce_sum(tf.square(gradients), axis=[1, 2, 3]))
gradient_penalty = tf.reduce_mean((norm - 1.0) ** 2)
return gradient_penalty