-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimple-example-jags.R
222 lines (178 loc) · 6.25 KB
/
simple-example-jags.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# simple_test.R - Testing JAGS fits of a non-hierarchical DDM model without lapse process in JAGS using R2jags in R
#
# Copyright (C) 2022 Kianté Fernandez, <[email protected]>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# This R code was generated using Michael D. Nunez's `simple_test.py`
#
# Record of Revisions
#
# Date Programmers Descriptions of Change
# ==== ================ ======================
# 01/08/2022 Kianté Fernandez Original code generation
# Libraries
library(here) # A Simpler Way to Find Your Files, CRAN v1.0.1
library(R2jags) # jags.parallel is part of R2jags
source(here("R", "Rhddmjagsutils.R"))
### Simulations ###
# Generate samples from the joint-model of reaction time and choice
# Note you could remove this if statement and replace with loading your own data to dictionary "gendata"
if (!file.exists(here("data", "simpleparam_test.RData"))) {
# Number of simulated participants
nparts <- 100
# Number of trials per participant and condition
ntrials <- 100
# Number of total trials in each simulation
N <- ntrials * nparts
# Set random seed
set.seed(2022)
ndt <- runif(n = nparts, min = .15, max = .6) # Uniform from .15 to .6 seconds
alpha <- runif(nparts, .8, 1.4) # Uniform from .8 to 1.4 evidence units
beta <- runif(nparts, .3, .7) # Uniform from .3 to .7 * alpha
delta <- runif(nparts, -4, 4) # Uniform from -4 to 4 evidence units per second
deltatrialsd <- runif(nparts, 0, 2) # Uniform from 0 to 2 evidence units per second
y <- rep(0, N)
rt <- rep(0, N)
acc <- rep(0, N)
participant <- rep(0, N) # Participant index
indextrack <- seq_len(ntrials)
for (p in seq_len(nparts)) {
tempout <- simulratcliff(
N = ntrials, Alpha = alpha[[p]], Tau = ndt[[p]], Beta = beta[[p]],
Nu = delta[[p]], Eta = deltatrialsd[[p]]
)
tempx <- sign(Re(tempout))
tempt <- abs(Re(tempout))
y[indextrack] <- tempx * tempt
rt[indextrack] <- tempt
acc[indextrack] <- (tempx) / 2
participant[indextrack] <- p
indextrack <- indextrack + ntrials
}
genparam <- vector(mode = "list")
genparam$ndt <- ndt
genparam$beta <- beta
genparam$alpha <- alpha
genparam$delta <- delta
genparam$deltatrialsd <- deltatrialsd
genparam$rt <- rt
genparam$acc <- acc
genparam$y <- y
genparam$participant <- participant
genparam$nparts <- nparts
genparam$ntrials <- ntrials
genparam$N <- N
save(genparam, file = here("data", "simpleparam_test.RData"))
} else {
# load dataset
load(here("data", "simpleparam_test.RData"))
}
# JAGS code
# Set random seed
set.seed(2022)
tojags <- "
model {
##########
#Simple DDM parameter priors
##########
for (p in 1:nparts) {
#Boundary parameter (speed-accuracy tradeoff) per participant
alpha[p] ~ dnorm(1, pow(.5,-2))T(0, 3)
#Non-decision time per participant
ndt[p] ~ dnorm(.5, pow(.25,-2))T(0, 1)
#Start point bias towards choice A per participant
beta[p] ~ dnorm(.5, pow(.25,-2))T(0, 1)
#Drift rate to choice A per participant
delta[p] ~ dnorm(0, pow(2, -2))
}
##########
# Wiener likelihood
##########
for (i in 1:N) {
# Observations of accuracy*RT for DDM process of rightward/leftward RT
y[i] ~ dwiener(alpha[participant[i]], ndt[participant[i]], beta[participant[i]], delta[participant[i]])
}
}
"
# Rjags code
load.module("wiener")
load.module("dic")
list.modules()
writeLines(tojags, here("jagscode", "simple_test.jags"))
nchains <- 6
burnin <- 2000
nsamps <- 10000
modelfile <- here("jagscode", "simple_test.jags")
# Track these variables
jags_params <- c("alpha", "ndt", "beta", "delta")
# Fit model to data
N <- genparam$N
y <- genparam$y
rt <- genparam$rt
participant <- genparam$participant
nparts <- genparam$nparts
ntrials <- genparam$ntrials
minrt <- rep(0, nparts)
datalist <- list(
y <- y,
N <- N,
nparts <- nparts,
participant <- participant
)
for (p in seq_len(nparts)) {
minrt[[p]] <- min(rt[(participant == p)])
}
# get names for the list
names(datalist) <- c("y", "N","nparts","participant")
# initialize initial values
initials <- vector(mode = "list")
for (c in seq_len(nchains)) {
initsList <- function() {
chaininit <- vector(mode = "list")
chaininit$alpha <- runif(nparts, .5, 2.)
chaininit$ndt <- runif(nparts, .1, .5)
chaininit$beta <- runif(nparts, .2, .8)
chaininit$delta <- runif(nparts, -4., 4.)
for (p in seq_len(nparts)) {
chaininit$ndt[[p]] <- runif(1, 0, minrt[[p]] / 2)
}
return(chaininit)
}
initials[[c]] <- initsList()
}
print(paste0("Fitting ", "simple", " model ..."))
jagsfit <- R2jags::jags(
model.file = modelfile,
data = datalist, inits = initials, jags_params,
n.iter = nsamps,
n.chains = nchains,
n.burnin = burnin, jags.module = "wiener"
)
samples <- update(jagsfit, n.iter = nsamps)
savestring <- here("modelfits", "simple_test_simple.Rdata")
print(paste0("Saving results to: ", savestring))
save(samples, file = savestring)
# Diagnostics
diags <- diagnostic(samples)
# Posterior distributions
jellyfish(samples, "alpha",filename = "figures/alpha_posteriors_simple.png")
jellyfish(samples, "ndt","figures/ndt_posteriors_simple.png")
jellyfish(samples, "beta","figures/beta_posteriors_simple.png")
jellyfish(samples, "delta","figures/delta_posteriors_simple.png")
# Recovery
recovery(samples, genparam["alpha"], "figures/alpha_recovery_simple.png")
recovery(samples, genparam["ndt"],"figures/ndt_recovery_simple.png")
recovery(samples, genparam["beta"],"figures/beta_recovery_simple.png")
recovery(samples, genparam["delta"],"figures/delta_recovery_simple.png")