-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcluster_analysis.py
119 lines (92 loc) · 4.02 KB
/
cluster_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
#!/usr/bin/python3
from networkit import *
import glob
import functools
import collections
import copy
import pandas
class HashablePartition(structures.Partition):
@classmethod
def fromPartition(cls, p):
hp = cls(len(p))
hp.setUpperBound(p.upperBound())
for u in range(len(p)):
hp[u] = p[u]
return hp
def __hash__(self):
"""
Hash the partition.
This hash value does not depend on the actually used
partition ids. Instead, it hashes a list of new
partition ids that are assigned in a canonical way.
Returns
-------
int
A hash value.
"""
canonicIds = list()
toCanonicId = dict()
nextId = 0
for i in range(self.numberOfElements()):
s = self[i]
if not s in toCanonicId:
toCanonicId[s] = nextId
nextId += 1
canonicIds.append(toCanonicId[s])
return hash(tuple(canonicIds))
class HashableGraphEvent(dynamic.GraphEvent):
def __hash__(self):
if self.type == dynamic.GraphEvent.TIME_STEP:
return hash(self.type)
else:
return hash((self.type, self.u, self.v, self.w))
graph_names = glob.glob("data/*.graph")
input_data = []
for g_path in graph_names:
short_name = g_path[g_path.find("/")+1:g_path.find(".")]
print(short_name)
solution_paths = glob.glob("{}.e.*.w*[0-9]".format(g_path))
if not len(solution_paths):
print("No solutions found")
continue
orig = graphtools.toUnweighted(readGraph(g_path, Format.METIS))
solutions = [readGraph(p, Format.METIS) for p in solution_paths]
edits = [[HashableGraphEvent(e.type, e.u, e.v, e.w) for e in dynamic.GraphDifference(orig, s).run().getEdits()] for s in solutions]
assert(len(set(map(len, edits))) == 1)
common_edits = functools.reduce(set.intersection, map(set, edits))
common_insertions = [e for e in common_edits if e.type == dynamic.GraphEvent.EDGE_ADDITION]
common_deletions = [e for e in common_edits if e.type == dynamic.GraphEvent.EDGE_REMOVAL]
all_edits = functools.reduce(set.union, map(set, edits))
all_insertions = [e for e in all_edits if e.type == dynamic.GraphEvent.EDGE_ADDITION]
all_deletions = [e for e in all_edits if e.type == dynamic.GraphEvent.EDGE_REMOVAL]
ccs = [HashablePartition.fromPartition(components.ConnectedComponents(g).run().getPartition()) for g in solutions]
ccs_subsets = list(map(Partition.numberOfSubsets, ccs))
num_different_components = len(set(ccs))
common_edits_solution = copy.copy(orig)
dynamic.GraphUpdater(common_edits_solution).update(common_edits)
common_partition = components.ConnectedComponents(common_edits_solution).run().getPartition()
all_edits_solution = copy.copy(orig)
dynamic.GraphUpdater(all_edits_solution).update(all_edits)
all_partition = components.ConnectedComponents(all_edits_solution).run().getPartition()
ints = community.PartitionIntersection().calculate
finest_clustering = functools.reduce(ints, ccs)
input_data.append(collections.OrderedDict([
(('', 'Graph'), short_name),
(('', 'k'), len(edits[0])),
(('#Solu-', 'tions'), len(edits)),
(('#Clus-', 'terings'), num_different_components),
(('#Clusters', 'Min'), min(ccs_subsets)),
(('#Clusters', 'Max'), max(ccs_subsets)),
#(('Common', 'Edits'), len(common_edits)),
(('Common', 'Ins.'), len(common_insertions)),
(('Common', 'Del.'), len(common_deletions)),
(('Common', 'Clus.'), common_partition.numberOfSubsets()),
#(('Total', 'Edits'), len(all_edits)),
(('Total', 'Ins.'), len(all_insertions)),
(('Total', 'Del.'), len(all_deletions)),
(('Total', 'Clus.'), finest_clustering.numberOfSubsets())
]))
print(input_data[-1])
df = pandas.DataFrame(input_data, columns=pandas.MultiIndex.from_tuples(input_data[0].keys()))
df.sort_values(by=('', 'k'), inplace=True)
print(df.to_latex(index=False))